3.7. Метод Зейделя
Этот метод представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1)-е приближения (x1 x2, ..., xi-1).
Пусть дана приведенная линейная система:
(i = 1, 2, …n). (3.35)
Выберем произвольно начальные приближения корней , стараясь, конечно, чтобы они в какой-то мере соответствовали неизвестным x1, x2, x3, ..., xn.
Предположим, что k-е приближение корней известно, тогда в соответствии с идеей метода будем строить (k+1) – е приближение по следующим формулам:
(3.36)
(k = 0, 1, 2,...).
Обычно процесс Зейделя сходится быстрее, чем метод Якоби. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и, т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода Якоби достаточны и для сходимости метода Зейделя. Если выполняется достаточное условие сходимости для системы (3.35) – по строкам, то в методе Зейделя выгодно расположить уравнения (3.36) так, чтобы первое уравнение системы имело наименьшую сумму модулей коэффициентов:
. (3.37)
Пример 3.6.
Для того чтобы обеспечить достаточные условия сходимости итерационного процесса (преобладающие значения диагональных элементов), преобразуем исходную систему и приведем к удобному виду. Чтобы дальнейшие преобразования были понятны, обозначим уравнения исходной системы буквами А, Б, В и Г соответственно:
х1= -0.2х2 +0.1х3 – 0.2х4 – 0.4; (Г)
х2 = -0.2х1 – 0.2х3 + 0.2; (А – Б)
х3 = 0.2х1 – 0.4х2 + 0.2х4 – 0.4; (Б)
х4 = 0.333х1 - 1.111. (2А – Б + 2В – Г)
Преобразованную систему будем решать методом Зейделя, тогда, с учетом требования (3.37), окончательно получим:
В качестве нулевого приближения (k = 0) возьмем . Зададим количество итераций k = 2 и все результаты вычислений сведем в табл. 3.1.
Таблица 3.1
Итерация, k
|
Значения неизвестных
|
Невязки
|
x1
|
x2
|
x3
|
x4
|
ε1
|
ε2
|
ε3
|
ε4
|
0
|
-0.4
|
0.2
|
-0.4
|
-1.111
|
-2.711
|
-1.911
|
0.444
|
-1.422
|
1
|
-0.263
|
0.36
|
-0.846
|
-1.244
|
-0.309
|
1.0
|
0.734
|
0.446
|
2
|
-0.329
|
0.422
|
-0.874
|
-1.199
|
0.095
|
-0.000
|
0.009
|
0.029
|
В приведенной таблице кроме значений неизвестных на каждом шаге оценивались невязки. Вспомним, что корнями уравнения называются такие значения неизвестных, которые превращают его в тождество. Так как мы используем итерационный (приближенный) метод, значения неизвестных вычисляем приближенно (три, четыре знака после десятичной точки), то, подставляя значения неизвестных в исходную систему, справа получим не ноль, а некоторые значения, называемые невязкой первого, второго, … уравнений на k –ом шаге.
Анализ данных, приведенных в табл. 3.1, показывает, что итерационный процесс быстро сходится, о чем свидетельствуют как быстрое уменьшение невязок, так и уменьшение изменений неизвестных (см. формулу (3.31) метода Якоби).
Достарыңызбен бөлісу: |