Пример 3.5.
Замечания
При наличии решения, точные методы всегда дадут его через конечное число шагов.
В рамках точных методов вычислительная погрешность увеличивается с ростом размеров СЛАУ и не может быть уменьшена.
3.6. Метод простой итерации (метод Якоби)
Рассмотрим систему
A·x = f, (3.27)
где матрица A = [aij] (i,j = 1, 2, …m) имеет обратную матрицу;
x = (x1, x2, x3,…xm) – вектор неизвестных, f – вектор свободных членов.
Преобразуем систему (3.27) к следующему виду:
(i = 1, 2, …m), (3.28)
где , , при этом предполагаем, что .
Условимся, как обычно, считать значение суммы равным нулю, если верхний предел суммирования меньше нижнего. Тогда при i = 1 уравнение (3.28) имеет вид
(3.29)
В методе простой итерации (методе Якоби) исходят из записи системы в виде (3.28), итерации при этом определяют следующим образом:
(3.30)
Начальные значения – (i = 0, 1, … m) задаются произвольно. Окончание итерационного процесса определяют либо заданием максимального числа итераций n0, либо следующим условием:
(3.31)
где ε > 0.
В качестве нулевого приближения в системе (3.30) примем
. (3.32)
Если последовательность приближений x1(0), x2(0), ..., xm(0), x1(1), x2(1), ..., xm(1), ..., x1(k), x2(k), ..., xm(k) имеет предел
, (3.33)
то этот предел является решением системы (3.28).
Достаточным условием сходимости решения системы (3.27) является то, что матрица A является матрицей с преобладающими диагональными элементами, то есть
(3.34)
Достарыңызбен бөлісу: |