Решение задач с помощью кругов Эйлера


Задача 3. В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С



бет6/8
Дата07.01.2022
өлшемі0,75 Mb.
#17105
түріРеферат
1   2   3   4   5   6   7   8
Байланысты:
эйлер круги

Задача 3.

В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К - жильцов с кошками. Сколько жильцов имеют собак? Сколько жильцов имеют кошек? Сколько жильцов не имеют ни кошек, ни собак?
Рис. 7

Решение (Рис. 7)

Собак имеют 15 + 8 = 23 человека; кошек 23 + 8 = 31 человек ; не имеют ни кошек, ни собак 120 - (15 + 8 +23) = 94 человека.

Ответ: 94 человека.



Задача 4.

В группе из 80 туристов, приехавших на экскурсию в Москву, 52 хотят посетить Большой театр, 30 - Художественный театр, 12 хотят посетить оба театра, остальные в театры ходить не хотят. Сколько человек не собирается идти в театр?



Решение (Рис. 8)
Рис. 8

Только большой театр посетят: 52-12=40 туристов;

только художественный театр посетят

30-12=18 туристов;

80-(40+18+12)=10 туристов не собираются идти в театр.

Ответ: 10 человек.



Задача 5.

При опросе 100 учеников 6-х классов выяснилось, что у 78 человек есть планшет, у 85 - смартфон, а у 8 учеников нет ни планшета, ни смартфона. У скольких учеников есть и планшет, и смартфон?



Решение (Рис. 9)
Рис. 9

Имеют планшеты и смартфоны

100 - 8 = 92ученика;

имеют только смартфон 92 - 78 = 14 учеников 6-х классов;

имеют только планшет 92 - 85 = 7 учеников;

имеют и планшет, и смартфон 92 - (14+7)=71 ученик

Ответ: 71 ученик.

Задача 6.

На пикник поехали 92 человека. Бутерброды с колбасой взяли 50 человек, с сыром - 60 человек, с ветчиной - 40 человек, с сыром и колбасой - 30 человек, с колбасой и ветчиной = 15 человек, с сыром и ветчиной - 25 человек, 5 человек взяли с собой все три вида бутербродов, а несколько человек вместо бутербродов взяли пирожки. Сколько человек взяли с собой пирожки?



Решение (Рис. 10).
Рис. 10

Изобразим условие с помощью кругов Эйлера.

Сначала отметим 5 человек, которые взяли с собой все три вида бутербродов;

затем вычислим:

15 - 5 = 10 человек взяли 2 вида бутербродов с колбасой и ветчиной;

25 - 5 = 20 человек взяли два вида бутербродов с сыром и ветчиной;

30 - 5 = 25 человек взяли два вида бутербродов с сыром и колбасой;

50 - (10 + 5 + 25) = 10 человек взяли бутерброды только с колбасой;

60 - (25 + 5 + 20) = 10 человек взяли бутерброды только с сыром;

40 - (10 + 5 + 20) = 5 человек взяли бутерброды только с ветчиной.

Пирожки взяли 92 - (10 + 25 + 10 + 10 + 5 + 20 + 5) = 7 человек.

Ответ: 7 человек.



Задача 7.

В классе 30 человек. 20 из них каждый день пользуются метро, 15 – автобусом, 23 – троллейбусом, 10 – и метро, и троллейбусом, 12 – и метро, и автобусом, 9 – и троллейбусом, и автобусом. Сколько человек ежедневно пользуется всеми тремя видами транспорта?

Решение (Рис. 11).
Рис. 11


1 способ. Для решения опять воспользуемся кругами Эйлера. Пусть х человек пользуется всеми тремя видами транспорта. Тогда пользуются
только метро и троллейбусом – (10 – х) человек,
только автобусом и троллейбусом – (9 – х) человек,
только метро и автобусом – (12 – х) человек.


Найдем, сколько человек пользуется одним только метро:
20 – (12 – х) – (10 – х) – х = х – 2.


Аналогично получаем: х – 6 – только автобусом и х + 4 – только троллейбусом, так как всего 30 человек, составляем уравнение:
х + (12 – х) + (9 – х) + (10 – х) + (х + 4) + (х – 2) + (х – 6) = 30,
отсюда
х = 3.

2 способ. А можно эту задачу решить другим способом: 20 + 15 + 23 – 10 – 12 – 9 + х = 30, 27 + х = 30, х = 3. Здесь сложили количество учеников, которые пользуются хотя бы одним видом транспорта и из полученной суммы вычли количество тех, кто пользуется двумя или тремя видами и, поэтому, вошли в сумму 2-3 раза. Таким образом, получили количество всех учеников в классе.

Ответ. 3 человека ежедневно пользуются всеми тремя видами транспорта.

Задача 8.

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах, созданных киностудией "Мельница". В частности, вопросы были о мультфильмах, повествующих о приключениях трёх самых известных богатырей - Алёши Поповича, Добрыни Никитича и Ильи Муромца.

Оказалось, что большинству из них нравятся "Три богатыря и Шамаханская царица", "Три богатыря на дальних берегах" и "Три богатыря. Ход конём". В анкетировании принимали участие 38 учеников. Мультфильм "Три богатыря на дальних берегах», нравится 21 ученику. Причём трём среди них нравятся ещё и "Три богатыря. Ход конём", шестерым - "Три богатыря и Шамаханская царица", а один ребёнок одинаково любит все три мультфильма. У мультфильма "Три богатыря. Ход конём" 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким шестиклассникам нравится мультфильм "Три богатыря и Шамаханская царица".

Решение


Так как по условиям задачи у нас даны три множества, чертим три круга. А так как по ответам ребят выходит, что множества пересекаются друг с другом, чертеж будет выглядеть так: (Рис. 12а).
Рис. 12а

Мы помним, что по условиям задачи среди фанатов мультфильма "Три богатыря. Ход конём" пятеро ребят выбрали два мультфильма сразу: (Рис. 12б)




Рис. 12б

Выходит, что (Рис. 12в):



21 – 3 – 6 – 1 = 11 – ребят выбрали только "Три богатыря на дальних берегах"

13 – 3 – 1 – 2 = 7 – ребят в последнее время смотрят только "Три богатыря: Ход конём"
Рис. 12в

Осталось только разобраться, сколько шестиклассников двум другим вариантам предпочитает мультфильм "Три богатыря и Шамаханская царица".



От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только "Три богатыря и Шамаханская царица" (Рис. 12г).
Рис. 12г

Теперь смело можем сложить все полученные цифры и выяснить, что:

мультфильм "Три богатыря и Шамаханская царица".

выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

Ответ: 17 человек.




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет