100ballov.kz
Задачи с решениями по геометрии
Шар, радиус которого 13см пересечен плоскостью на расстоянии 12см от центра. Найдите площадь сечения
Пусть точка O центр шара, а точка O1 центр окружности отсекаемой плоскостью альфа, следовательно O1X радиус окружности.
Найдем этот радиус по теореме Пифагора:
O1X2=OX2-O1O2
O1X2=132-122=25
O1X=r=5
Sсеч=25п
Периметр правильного треугольника, вписанного в окружность, равен 54 см. Найдите периметр квадрата, вписанного в эту окружность.
Радиус описанной окружности около правильного треугольника
rокр=√3*a/3, где a-сторона треугольника.
54/3=18
rокр=√3*18/3=6√3
Следовательно сторона квадрата будет равна: b2+b2=(6√3)2
2b2=36*3
b2=54
b=√54=3√6
P=4*3√6=12√6
Найдите боковую поверхность цилиндра с высотой, равной 3см, если осевое сечение цилиндра плоскостью-квадрат
В основании этого цилиндра лежит окружность с диаметром 3 см, это следует из условия "осевое сечение цилиндра плоскостью-квадрат"
Для того чтобы найти боковую поверхность цилиндра надо длину окружности что лежит в основании умножить на высоту!
Теперь остается лишь подставить: Sбок=3*п*3=9п
Около куба описан цилиндр. найти полную поверхность цилиндра, если поверхность куба равна S
Чтобы решить это задание, нужно знать формулу полной поверхности цилиндра:
Sполн=Sосн*2+Sбок.пов.
Для того чтобы найти Sосн=пR2; а Sбок.пов.=H*2пR, где H-высота цилиндра, R-радиус основания цилиндра, п-величина "пи"=3,14....
Наш цилиндр описан около куба, следовательно его длина его ребра равна высоте нашего цилиндра, а радиус равен √2a2=a√2 (Из правила прямоугольного треугольника)
В дано нам дается только площадь поверхности нашего куба, которая равна Sкуба=6a2, отсюда a2=S/6
Теперь запишем вместе формулу полной поверхности цилиндра и начнем упрощать.
Sполн=пR2*2+H*2пR=2пR(R+H)
Теперь просто подставим значения R и Н
Sполн=2п*a√2(a√2+a)=2п(2a2+a2√2)
Подставим a2=S/6 Sполн=2п(2S/6)+2п(√2S/6)=(2пS/3)+(√2пS/3)=(2пS+√2пS)/3
Дальше смотрите по ответу, я точно преобразить не смогу, потому что не знаю в каком виде дают ответы в тесте, но в принципе формула остается такой
Достарыңызбен бөлісу: |