M.K. Kulbekov, T.Z. Kystaubayev, Sh.I. Khamrayev, D.M. Kulbekov
ABOUT SOME THERMODYNAMIC EFFECT IN THE DIFFUSION
SOLID-PHASE PROCESSES
(г. Алматы, КазНПУ имени Абая)
Мақалада қылтүтікті қуысты материалдарды жылулық ӛңдеу кезіндегі
диффузиялық
қаттыфазалық
үдерістерде
орын
алатын
инверсиялық
термодинамикалық эффектінің болу мүмкіндігі жайлы қарастырылған. Ұсынылып
отырған модельде мұндай қорытынды жасауға аталған үдерістердің зоналық сипатта
ӛтуі және олардың диффузиялық табиғаты негіз бола алады. Термодинамикалық
эффектінің меншікті молдік жылуы және сондағы пайда болатын температура
104
ӛзгерістері лай минералдарының дегидратациялану және MgCO
3
мен CaCO
3
карбонаттарының диссоциациялану үдерістері үшін есептелінген. Жүргізілген
есептеулерге сәйкес, зерттелген температуралардың ауқымды аралығында
термодинамикалық эффектінің таңбасы оң болып табылады. Алайда, технологиялық
үдерістер тұрғысынан қарастырғанда, бұл эффектінің таңбасы теріс болады, себебі ол
жылудың, яғни отынның қосымша шығынын қажет етеді. Айтылған жайт, кӛптеген
жылу технологиялық үдерістерге тән отынның есептелінген және нақты
шығындарының арасындағы айтарлықтай айырмашылықты түсіндіруге мүмкіншілік
береді.
В
статье
рассматривается
о
возможном
наличии
инверсионного
термодинамического эффекта в диффузионных твердофазных процессах (реакциях),
имеющих место при термообработке капиллярнопористых материалов. В
предложенной модели зональный характер протекания данных процессов, а также их
диффузионная природа дают основание прийти к такому заключению. Удельная
молярная теплота термодинамического эффекта и изменение температуры,
происходящее при этом, рассчитаны для процессов дегидратации глинистых
минералов и диссоциации карбонатов MgCO
3
и CaCO
3
. Согласно проведенным
расчетам, в широком диапазоне исследуемых температур знак термодинамического
эффекта является положительным. Однако, с точки зрения технологических
процессов, эффект носит отрицательный характер, так как требует дополнительного
расхода тепла, т.е. топлива. Этот факт может рассматриваться как возможное
объяснение значительного расхождения между фактическим и расчетным расходами
топлива, присущего для многих теплотехнологических процессов.
A possible presence of inversion thermodynamic effect in the diffusion solid-phase
processes (reactions) occurring at the thermal processing of capillary-porous materials is
considered in the article. In offered model such conclusion is made on the basis of the zonal
mechanism and diffusive nature of the course of these processes. Specific molar heat of
thermodynamic effect and resulting temperature change are calculated for the processes of a
dehydration of clay minerals and dissociation of carbonates of MgCO
3
and CaCO
3
.
According to the calculations, the sign of the thermodynamic effect is positive in a wide
range of the temperatures. In the terms of technological processes, however, the effect is
negative as it demands an additional expense of heat, i.e. fuel. This fact can be considered as
a possible explanation of the significant divergence between actual and calculated fuel
expenses which takes place in many heat technological processes.
Түйін сөздер: қылтүтікті қуысты материал, диффузиялық қаттыфазалық үдеріс, Джоуль-
Томсон эффекті, дегидратациялану, диссоциациялану.
Ключевые слова: капиллярнопористый материал, диффузионный твердофазный
процесс, эффект Джоуля-Томсона, дегидратация, диссоциация.
Keywords: capillary-porous material, diffusion solid-phase process, Joule-Thomson effect,
dehydration, dissociation.
The study of solid-phase reactions is essential for the intensification and optimization
of complex physical-chemical and heat technological processes in chemical, light, food and
refining industries. Mechanism and kinetics of reactions in mixtures of solids are mostly
discussed in well-known papers [1-4]. It is established that the solid-phase processes in
macroscopic systems (in the volume of particles and objects) have zonal nature and
predominantly proceed in diffusion region [1-6]. It should be noted, however, that the
thermodynamic side of diffusion solid-phase processes are still not sufficiently explored [7,
8]. In this work, an attempt is made to fill in gaps in this question.
Zonal mechanism and diffusive character of solid-phase processes (reactions) in the
system ―solid – gas‖ and the results of many experimental researches [3-6, 9, 10] on study of
transport phenomena at thermal processing of capillary-porous materials (i.e. ceramics drying
105
and roasting, high temperature roasting of cement clinker and other) allow us to assume about
the existence of Joule – Thomson effect (throttling process) in these processes.
To justify this fact, consider the mechanism of diffusion solid-phase process
proceeding in capillary-porous materials (dehydration of clay minerals, carbonate dissociation
and other). It has been experimentally established [1-6] that the physical-chemical
transformation processes at first go on the outer surface of the sample and then when
appropriate temperature-gas conditions are achieved the localized reacting surface go deep
into the volume of sample with particular speed. The resulting gaseous substance outflows
through the layer of solid reaction product, which is outer capillary-porous layer of solid in
our case, into its surroundings and undergoes a sharp expansion. Mechanism discussed above
is common for a whole series of solid-phase diffusion-guided reactions in ―solid-gas‖ system.
Since there is a significant pressure difference between gas located inside the sample and its
surroundings, we deal with the integral Joule-Thomson effect. Applying the Clapeyron
equation for the description of expanded gas in the environment and the Van der Waals
equation for the gas under high pressure inside the sample and taking into account that
enthalpy remains constant in the process, we can use following equation [11] in order to
estimate the thermodynamic effect both qualitatively and quantitatively:
(
), (1)
where
and
– the temperatures of the gas before and after expansion respectively,
– its molar heat capacity at constant volume,
– the universal gas constant, and – Van
der Waals constants for the real gases,
– a volume of the gas before expansion (gas volume
in a sample in our case). Analyzing Equation (1) shows that the effect is positive (that is, the
gas cools) when
, (2)
and negative (the gas warms) if
. (3)
At inversion temperature the gas neither warms nor cools:
. (4)
As experiments have shown,
, (5)
where T
c
– the critical temperature for a given gas. Therefore, based on the statements above,
it may be concluded that the qualitative and quantitative indicators of a value of the heat
effect depend mainly on (a, b) and initial volume of the gas (
). With this approach, the
amount of gas (
) plays a role in a qualitative evaluation of the heat of the investigating
effect.
In our case, in order to determine a theoretically probable minimum of molar volume
of a gas generated as a result of phase (chemical) transformations the relationship below can
be used:
⁄ (6)
where – a relative porosity of the samples (value of the varies in a wide range from 0,2
to 0,8 for the different capillary-porous materials),
– a volume of the sample,
– an
amount of bounded substance transforming into a gaseous state.
Taking into account Eq. (6), the Eq. (1) becomes
(
) (7)
106
The evaluation of the heat of the effects mentioned above is essential for the heat
technological processes. Based on the Eq. (7), the total heat of thermodynamic effect for an
arbitrary amount (
) of the gas can be determined by:
(
)(
)
or
(
о
о
) (8)
Let us consider a practical application of thermodynamic theory of the heat effect
discussed above. Suppose that the water bounded physically, physical-chemically and
crystalline is removed from the sample at the isothermal regime (in a temperature range
400
1000 K). The results of the calculations of the temperature change and heat as a function
of the initial values of
and
are presented in the Tables 1 and 2. The values of the van
der Waals constants (a and b) are taken from [12].
Table 1
The temperature change (
) and specific molar heat (
) dependences on initial
volume of gas
(
) (water vapor) at the different temperatures(
)
⁄
Т
⁄
Т (
) К
Т
К
700 К
1000 К
Т
К
700 К
1000 К
10
9,6
8,5
7,5
242
215
187
15
6,6
5,9
5,3
165
149
133
25
4,0
3,6
3,3
100
91
83
40
2,5
2,3
2,1
63
57
52
70
1,4
1,3
1,2
36
33
30
150
0,7
0,6
0,56
17
15
14
400
0,25
0,23
0,21
6,3
5,8
5,3
Table 2
The temperature change (
) and specific molar heat (
) dependences on initial
temperatures of gas (
) (water vapor) at the different volumes (
)
Т
К
Т
⁄
Т (
) К
=
⁄
=
,
⁄
400
9,6
4,0
2,5
242
100
63
500
9,3
3,9
2,4
233
97
61
600
8,9
3,7
2,37
224
94
59
700
8,5
3,6
2,29
215
91
57
800
8,2
3,5
2,20
206
88
56
900
7,8
3,4
2,15
197
85
54
1000
7,5
3,3
2,10
187
83
52
It is known [11, 12] that a critical temperature for water is t
c
≈ 374°C (T
c
≈ 647 K),
then the value of inversion temperature of water is T
i
≈ 3880 K. It means that there is a
positive effect, i.e. the gas (water vapor) cools, in temperature range under investigation (Т =
400
1000 K). In terms of a technological process, the effect has a negative sign because an
107
additional expense of the technological fuel is necessary for the compensation of the cooling
process.
The comparative analysis of the data of Tables 1 and 2 shows that the quantitative
indicators of the thermodynamic effect depend stronger on the initial volume of the water
vapor (i.e. on initial pressure Р
) than on its initial temperature
, while
Т and
Т
change
linearly with temperature.
The results of the qualitative and quantitative estimations of the thermodynamic effect
for carbonates (MgCO
3
and CaCO
3
) dissociation processes are given in Tables 3 and 4. The
processes are studied at isothermal conditions in the temperature range of 700 - 1300 K. It is
known that the carbon dioxide (CO
2
) produced as a result of these processes diffuses through
the decarbonized porous layer into surrounding space and undergoes to a sharp expansion.
The carbon dioxide critical temperature is 31°C (304 K), so its inversion temperature is
approximately 1824 K. It means that, at the dissociation temperatures, the positive effect
(negative - in terms of technological processes) occurs primarily; that is, the reaction product -
carbon dioxide, cools. This requires an additional technological fuel expense for the
completion of the physical-chemical transformation, which is the dissociation process in our
case. The results of data estimations for the molar endothermic heat and the temperature
changes due to the Joule-Thomson effect occurring at the dissociation of MgCO
3
and CaCO
3
carbonates are presented in Tables 3 and 4.
Table 3
The dependences
(
) и (
) for the thermodynamic effect taking
place at the dissociation process of MgCO
3
and CaCO
3
carbonates (for the carbon dioxide
CO
2
) at T = const.
⁄
Т
⁄
Т (
) К
Т
К
1000 К
1300 К
Т
К
1000 К
1300 К
10
2,9
1,0
-0,9
56
17
-15
15
2,5
1,5
0,5
49
26
8,4
25
1,7
1,2
0,65
33
21
11
40
1,1
0,81
0,51
22
14
8,6
70
0,65
0,49
0,33
13
8,6
5,6
150
0,31
0,24
0,16
6
4,2
2,8
400
0,12
0,09
0,06
2,3
1,6
1,1
Table 4
The dependences
(
) и (
) for the thermodynamic effect taking
place at the dissociation process of MgCO
3
and CaCO
3
carbonates (for the carbon dioxide
CO
2
) at V = const.
Т
К
Т
⁄
Т (
) К
=
⁄
=
⁄
700
2,9
1,7
1,1
56
33
22
850
1,9
1,4
0,96
36
26
17,6
1000
1,0
1,2
0,81
17
21
14
1150
0,06
0,9
0,66
1,0
16
12
1300
-0,9
0,65
0,51
-15
11
8,6
108
As can be seen in Table 3, the dependencies
Т
(
) and Т (
) at the
temperatures 1000 and 1300 К have an extreme character and in the last case the
thermodynamic effect changes the sign, that is, at
⁄
it becomes negative
(
Т ). This fact can be explained by the course of dissociation process at the vicinity of
inversion curve and its hopping at the small volume. The data of Table 4 confirm this
consideration.
In conclusion, it should be mentioned, that in many heat technological processes
where diffusion solid-phase processes relating with a throttling process take place, a
significant divergence (10 – 30%) between actual and calculated technological fuel expenses
is observed, and one of the reason of this is a lack of sufficient studies of the heat effects in
the technologies under researching.
1.
Будников П.П., Гинстлинг А.М. Реакции в смесях твердых веществ. – М.:
Стройиздат, 1971. – 488 с., ил.
2.
Рао Ч.Н.Р., Гопалакришнан Дж. Новые направления в химии твердого тела. -
Новосибирск, Наука Сиб. отд.,1990.-520., ил.
3.
Браун М., Доллимер Д., Галвей А. Реакции твердых тел: Пер с англ. – М.: Мир, 1983.
– 360 с., ил.
4.
Кулбеков М.К. Изучение кинетики некоторых физико-химических процессов при
обжиге топливо содержащих керамических материалов. – ЖПХ. – 1990. – Т. 63. -
№6. – с.1355 – 1360.
5.
Кулбеков М.К. К теории диффузионной кинетики параллельных твердофазных
процессов при обжиге топливосодержащей керамики. – ЖПХ. – 1992. – т.65. - №12. –
с.2689 – 2694.
6.
Кулбеков М.К., Сайбулатов С.Ж. О механизме и кинетике выгорания углерода при
обжиге ресурсосберегающих золокерамических материалов. – Неорганические
материалы.-1991.-Т.27.-№5.-С.1074-1078.
7.
Құлбекұлы М. Физика-химиялық түрленулер барысындағы гетерогенді
құбылыстарда орын алатын кейбір термодинамикалық процестерді талдау.-Вестник
КазНПУ имени Абая, серия ФМН, 2009, №1(25).-с.110-114.
8.
Кулбеков М.К. К термодинамике процессов газопереноса при фазовых и химических
превращениях в теплотехнологии капиллярнопористых материалов. – Поиск. – 2012.
– №1. – с.135 – 139.
9.
Сулейменов С.Т., Сайбулатов С.Ж., Кулбеков М.К. Золы ТЭС в производстве
строительной керамики. – Алма-Ата: Казахстан, 1986. – 144 с., ил.
10.
Кулбеков М.К. Тепломассобменные процессы в технологии керамических
материалов. – В книге: Строительные материалы XXI века. Технология и свойства.
Импортозамещение, Алматы, 2001, с. 53 – 58.
11.
Сивухин А.В. Термодинамика и молекулярная физика. – М.: Наука, 1990. – 592 с.,
ил.
12.
Р. Рид, Дж. Праускинц, Т. Шервуд. Свойства газов и жидкостей. Пер. с англ. – Л.:
Химия 1982. – 592 с., ил.
109
ӘОЖ 378.016.02:004.414.23(574)
Достарыңызбен бөлісу: |