Атты студенттердің IV жоо аралық дәстүрлі ғылыми конференциясының ЕҢбектері



Pdf көрінісі
бет53/135
Дата21.02.2017
өлшемі15,88 Mb.
#4636
1   ...   49   50   51   52   53   54   55   56   ...   135

PROBLEM STATEMENT: 

 

It is required to find the solutions of Heat Equation with moving (known) boundary conditions:

 

 

2



1

2

2



1

1

x



u

a

t

u





)

(



)

(

t



x

t





0



t

 

2

2



2

2

2



2

x

u

a

t

u









x

t)

(



0



t

 

 



I.C: 

0

)



0

,

0



(

1



u

)



(

)

0



,

(

2



x

x

u



 

(1)  , 


0

)

0



,

(

2





u

 


411 

 

 



B.C:  

)

(



)

(

1



1

t

bu

t

u

a

t

x













 

(2), 


 

)

(



2

2

)



(

1

1



t

x

t

x

fu

x

u

e

du

x

u

c





















 , 



0,

0

d



f



 

(3) 


 

)

),



(

(

)



),

(

(



2

1

t



t

u

t

t

u



 

 



(4); 

 

PROBLEM SOLUTION: 

 

Solutions is represented in the polynomial form of Integral Error Functions: 



























0

1

1



1

2

2



)

(

)



,

(

n



n

n

n

n

n

t

a

x

erfc

i

B

t

a

x

erfc

i

A

t

t

x

u

























0



2

2

2



2

2

)



(

)

,



(

n

n

n

n

n

n

t

a

x

erfc

i

D

t

a

x

erfc

i

C

t

t

x

u

where 



,

,

,



n

n

n

n

A B C D

has to be determined. 

Using the L’Hospitalle’s rule for (1) represented in the following form 

0

2



lim(

)

0



2

n

n

n

t

x

t C i erfc

a

t







,



n

n

n

n

n

n

n

n

t

n

n

n

t

D

a

x

n

x

t

a

x

a

t

a

x

erfc

i

D

t

a

x

erfc

i

D

t

)

2



(

!

2



2

)

2



(

2

lim



2

)

(



lim

2

2



2

2

0



2

0





















 



0

2

2



( )

! (2 )


n

n

n

n

x

D

x

n

a





,where 



0



)

(

!



)

0

(



)

(

n



n

n

x

n

x



By using Taylor series we determine 

)



0

(

)



(

2

)



(

2

1



n

n

n

n

a

D



From  (2) by substitution 





t

we are ready to use the Leibniz’s formula 













n



l

l

l

n

n

v

u

l

n

v

u

0

)



(

)

(



)

(

)



*

(

, we obtain 























































n

l

l

n

l

n

n

n

n

l

l

n

l

n

n

n

a

erfc

i

l

n

a

B

a

erfc

i

l

n

a

A

0

)



(

1

2



1

)

(



1

1

0



)

(

1



2

1

)



(

1

1



2

)

(



)

(

2



2

)

(



)

(

2







 



First of all, we should solve this part, which 

 


412 

 

( )



2

1 (


)

1

0



1

(

)



(

)

2



l

n

n

n l

n

l

n

i

erfc

l

a

 








 




 



 





 



 

 


0

2

1



1

1

(



)

...


0

2

n



n

n

n

i

erfc

a

 






 





 



 





 


 

 


2

0

1



1

1

(



)

2

n



n

n

n

i

erfc

n

a

 






 





 



 





Using Faa Di Bruno’s formula for each part of 



( )

2

1 (



)

1

0



1

(

)



(

)

2



l

n

n

n l

n

l

n

i

erfc

l

a

 








 




 


 







we get

 


1

1

2



1

2

)



(

)!*


1

(

*





















a

erfc

i

n

n

n

 = 


!

1

2



)

(

2



)

(

!



1

)

1



(

)!*


1

(

*



1

1

1



2

1

2



2

1

1



b

n

b

a

a

erfc

i

b

n

n





























 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     . 



 

n

n

n

a

erfc

i



















1

2

1



1

2

)



(

 











































1

1



2

1

2



2

1

2



1

1

!



2

)

(



2

)

(



exp

2

)



(

)

1



(

...


1

j

b

n

b

n

n

n

n

j

a

a

a

b

b

n

j







,  



where

!

!...



!

...


1

1

n



n

b

b

n

b

b

n









. Let’s say that where 



2

(

)



 

can be represented in the following form: 



n



n

n

n

a

a

a

























...


2

1

2



...

2

)



(

1

0



1

1

1



2

1

0



1

2

 and



1



1

1

)



1

(

1



2

...


2

1

2



)

(













n

n

a

a





.

 Consider



n

m

n

n

a





0



1

2

1



)

(

 



By substitution 

0



,we have


'

1

0



2

)

0



(

a



,

'



1

1

2



)

0

(



a



, . . . , 



'

1

)



(

2

)



0

(

a



n

n



1

1



1

1

1



2

0

1



1

2

1



( )!

...


!

2

1!



b

n

b

a

n

i

erfc

b

a







 











 



( )

2

1



1

0

0



1

1

1



1

(0)


2

0

*



( 1)

exp


...

2

2



!

j

b

j

n

n

n

n

j

n

n

a

b b

a

a

j





























 

By cancelling other parts we get 

!

1

2



2

!

1



!*

*

1



1

1

1



1

0

2



1

1

0



b

n

b

k

n

n

a

a

erfc

i

b

n

A



























.

 



For the first part of first boundary condition (2), we obtain 

 



























k



n

n

n

n

n

a

erfc

i

B

a

erfc

i

A

b

n

a

a

0

1



0

2

1



0

2

1



2

1

1



2

2

!



!

4



 



         (5) 

By using Leibniz’s and Faa Di Bruno’s formula, we get for second part of condition (2), 

 


413 

 



























k



n

n

n

n

n

a

erfc

i

B

a

erfc

i

A

n

b

0

1



0

2

1



0

2

2



2

!



(6) 


And by adding (5) and (6) we have 



























k

n

n

n

n

n

a

erfc

i

B

a

erfc

i

A

n

a

a

0

1



0

2

1



0

2

2



1

1

2



2

!

4





 +  



























k

n

n

n

n

n

a

erfc

i

B

a

erfc

i

A

n

b

0

1



0

2

1



0

2

2



2

!



 



'

0

n

 

(7) 



For the second boundary condition(3), we obtain 

 



































































































k



n

n

n

n

n

n

n

n

n

k

n

k

n

n

n

n

n

n

n

n

n

k

n

a

erfc

i

D

a

erfc

i

C

n

f

a

erfc

i

D

a

erfc

i

C

n

a

e

a

erfc

i

B

a

erfc

i

A

n

d

a

erfc

i

B

a

erfc

i

A

n

a

c

0

2



0

2

0



2

0

2



2

0

2



0

2

2



1

0

1



0

1

0



1

0

2



1

0

2



0

2

1



1

2

2



!

2

2



!

4

2



2

!

2



2

!

4









  (8) 


For the third boundary condition (4)

 

















































k



n

n

n

n

n

k

n

n

n

n

n

a

erfc

i

D

a

erfc

i

C

a

erfc

i

B

a

erfc

i

A

0

2



0

2

0



0

1

0



1

0

2



2

2

2





  

(9) 



From (9)  we can find 

n

 

1

2



0

2

0



)

(

2



1

1

0



1

0

2



2

)

0



(

2

2



2

I

a

erfc

i

a

erfc

i

a

a

erfc

i

B

a

erfc

i

A

C

n

n

n

n

n

n

n

n

n

n









































,    where  

0,1, 2,...,

n

k

From (8) we can find



n

 

 

Let’s take right side as  , then we obtain 



n

 

2

1



0

1

0



2

2

1



1

1

0



1

0

2



2

1

1



2

2

2



2

I

a

erfc

di

a

erfc

i

a

c

a

erfc

di

a

erfc

i

a

c

B

G

A

n

n

n

n

n

n















































 

where  



0,1, 2,...,

n

k

 



 

From (6) we can find 



n

B

 

)



0

(

2



2

!

2



2

!

4



)

(

0



0

1

0



1

0

2



1

0

2



1

0

2



2

2

1



1

n

k

n

k

n

n

n

n

n

n

n

a

erfc

i

B

a

erfc

i

I

n

b

a

erfc

i

B

a

erfc

i

I

n

a

a





















































 


414 

 















































1

0



1

0

2



2

1

1



1

0

1



0

2

2



1

1

2



)

(

2



2

4

!



2

2

4



!

)

0



(

a

erfc

bi

a

erfc

i

a

a

n

a

erfc

bi

a

erfc

i

a

a

n

I

B

n

n

n

n

n

n





,  where  



0,1, 2,...,

n

k

 




Достарыңызбен бөлісу:
1   ...   49   50   51   52   53   54   55   56   ...   135




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет