Барьердің салыстырмалы биіктігі h
b
= 3 тең асқын өткізгіш туннельдік
ауысымның шашырау матрицасы негізінде вольт-амперлік
сипаттамасын есептеу туралы
Кванттық транспорттық құбылыстар теориясы аясында шашырау матрицасы əдісін қолдану арқылы
барьердің салыстырмалы биіктігі h
b
= 3 тең асқын өткізгіш туннельдік ауысымның вольтамперлік
сипаттамасы мен дифференциалды өткізгіштің
dI V dV
-
спектрлері есептелген. Асқын өткізгіш
саңылауы (реттелу параметрі) 0,1÷1 ш. б. аралығында өзгергендегі Джозефсон ауысымының
транспорттық сипаттамаларының эволюциясы көрсетілген. Қарастырылған жағдайда барьердің
мөлдірлігі тұрақты болғандықтан (D = 0,1), ауысымға температураның əсер етуі массивті асқын
өткізгіштің реттелу параметрін 0,1÷1 ш. б. аралығында өзгерту арқылы модельді зерттелген.
Д.М.Сергеев, И.Н.Балмухан
18
Вестник Карагандинского университета
D.M.Sergeyev, I.N.Balmukhan
About calculation of the current-voltage characteristics of the superconducting tunnel
junction based on a scattering matrix at a relative barrier height h
b
= 3
Within the framework of the theory of quantum transport phenomena using the method of a scattering matrix
were calculated current-voltage characteristics and
dI V dV -differential conductivity spectra of supercon-
ducting tunnel junctions at a relative barrier height hb = 3. The evolution of the transport characteristics of a
Josephson junction with a change in the superconducting gap (the order parameter) from 0,1 ÷ 1 arb. units
was shown. In this case, the effect of temperature on the transition was studied theoretically by varying of the
order parameter value of a massive superconductor in a range of 0,1 ÷ 1 arb. units, because the relative trans-
parency of the transition barrier is constant (D = 0,1).
References
1 Karpov A., Blondel J., Dmitriev P., Koshelets V.
IEEE Trans. on Appl. Supercond., 1999, 9, 2, p. 4225–4228.
2 Suzuki M., Watanabe T., Matsuda A. Phys. Rev. Lett., 1999, 82, 26, p. 5361–5364.
3 Tucker J.R., Feldman M.J. Rev. Mod. Phys., 1985, 57, 4, p. 1055–1113.
4 Likharev K.K. Introduction to the dynamics of Josephson junctions, Moscow: Nauka, 1985, 320 p.
5 Barone A., Paterno G. Physics and Applications of the Josephson Effect, New York: Wiley & Sons, 1982, 639 p.
6 Sergeyev D.М. Anharmonicity superconducting current in Josephson structures, Aktobe, 2013, 175 p.
7 Sergeyev D.М., Shunkeyev К.Sh. Vestnik of KarSU. Seriya Fizika, 2008, 1 (49), p. 33–37.
8 Landauer R. Z. Phys. B, 1975, 21, p. 247–254.
9 Buttiker M. Phys. Rev. Lett., 1990, 65, 23, p. 2901–2904.
10 Buttiker M. Phys. Rev. B, 1992, 46, 19, p. 12485–12507.
11 Buttiker M. J. Phys. Condensed Matter., 1993, 5, p. 9361–9378.
12 Lesovik G.B., Sadovskyy I.A. Successes of physical sciences, 2011, 181, p. 1041.
13 Sergeyev D.М., Kuzmichev S.А., Aimaganbetova Z.K., Shunkeyev K.Sh. News of the National Academy of Sciences of the
Republic of Kazakhstan. Physico-Mathematical Series, 2015, 2, 300, p. 116–123.
14 Blonder G.E., Tinkham M., Klapwijk T.M. Phys. Rev. B, 1982, 25, p. 4515–4532.
15 Averin D., Bardas A. Phys. Rev. Lett., 1995, 75, p. 1831–1834.
16 Bardeen J., Cooper L.N., Schriffer J.R. Phys. Rev., 1957, 108, p. 1175–1204.
17 Phillips T.G., Dolan G.J. Physica B+C, 1982, 109–110, p. 2010–2019.
18 Kerr A.R., Pan S.-K., Feldman M.J., Davidson A. Physica B+C, 1981, 108, p. 1369–1370.
Серия «Физика». № 4(80)/2015
19
UDC 669.715
D.U.Smagulov
1
, N.A.Belov
2
, A.M.Dostayeva
1
1
K.I.Satpayev Kazakh National Technical University, Алматы;
2
National University of Science and Technology «MIS and A», Moscow, Russia
(E-mail: nikolay-belov@yandex.ru)
Roasting effect on the electrical resistivity of the Al-0,5%Zr alloys
The effect of regimes of deformation and heat treatment on electrical resistivity and vickers hardness of 2
aluminum alloys containing 0.2% Zr and 0.4% Zr (mass%) was studied. Flat ingots (10х40х200 mm and
40х120х200 мм) were produced by casting into a graphite moulds. ingots were hot and cold rolled to obtain
sheets (thickness 1.3 mm and 5 mm for cold rolled and hot rolled accordingly). Ingots and sheets were an-
nealed according to multistage modes in the temperature range 200–650 °C with a step of 50 °C and 3 h hold-
ing at each stage. Polished samples cut from the central part of the ingots (as-cast and annealed) were studied.
the structure was examined in optical (om, axiovert 200 mmat) and electron scanning electron (tescan vega 3)
microscopes. Thin foils for transmission electron microscopy (tem) were prepared by electrolitic thinning in a
perchloric acid–alcohol solution and studied at 160 kv.
Key words: aluminum alloys, system Al–Zr, phase Al
3
Zr, electrical resistivity, deformation and heat treat-
ment, hardening and softening.
Introduction
In the recent years the interest for the aluminum alloys, strong enough, maintaining high electrical
conductivity even after the heating up to 250–300
о
С grows. Traditional wire line made of technical alumi-
num of the A5E mark does not satisfy the requirements given, because it loses the strength even after the
short-term heating in such temperature range [1, 2].
The solution of the problem is quiet successful approach on the producing of wire line made of low-
alloy aluminum with addition of the zirconium [3–6].
The primary pattern of the aluminum wire line designed to produce the lines (core conductors)
according to the rules is rod, obtained by the continuous casting and rolling technique on the properzzi and
southwire types of equipment [7]. In the wire line made of Al-Zr alloy all required specifications mainly the
electrical resistivity and strength (after heating up to 300
0
С) are determined by the rod metallurgical
structure.
Aluminum wire thermostability depends on the zirconium in the alloy as well as the melting, casting
and heat treatment processing methods. Positive effect of the zirconium on thermostability is condition by
the nanoparticles of the l12 (Al
3
Zr) phase, formed in the rod when roasting [8–10]. This is exactly what
identified the objectives set out in this work, and is the most important:
a) to obtain aluminum alloy hot-rolled sheets, with 0,5% Zr, in case of realization of the continuous
casting and rolling on the industrial installations;
b) to study the roasting temperature effect (up to 650
o
С and including) on the specific electrical
resistivity and strength of these sheets;
в) to rationalize a profitable ratio between the roasting temperature and zirconium concentration.
Experimental technique
In the capacity of the main study objects sheets of aluminum alloy with 0,5% Zr were taken.
Experimental alloys were prepared of the primary alumium of the а7е (GOST 11069–2001) mark in the
graphite-clay crucible of electrical resistance furnace. Zirconium was introduced into the alloy under
temperature of 850–900
o
С (i.e. higher than a liquidus point) in the form of Al–15% Zr (GOST 53777–2010)
ligature [11]. 40х120х200 mm ingots were obtained by casting into the graphite casting-form. Sheets made
of such ingots (figure 1) were obtained as follows: to heat ingots casted to 450
o
С, then roll the sheets with
87,5% degree of squeezing and up to 5 mm thickness.
D.U.Smagulov, N.A.Belov, A.M.Dostayeva
20
Вестник Карагандинского университета
Figure 1. Appearance of the experimental ingots and sheets made of them
Chemical alloys composition study was performed on the ARL 4460 spectrometer, results are shown in
the table 1.
T a b l e 1
Chemical composition of experimental alloys
Alloy Concentration,
%
wt.
№ Reference
Si
Fe
Zr
Al
0 00Zr 0,0073
0,140 - base
1 02Zr 0,072
0,139
0,180
base
2 03Zr 0,074
0,131
0,283
base
3 04Zr 0,080
0,140
0,380
base
4 05Zr 0,075
0,133
0,476
base
A sheet roasting was performed under the temperature of 300–650 °С (table 2), with accuracy ranging
of
5 °С, stepwise in a muffle electric furnace («snol»).
T a b l e 2
Ingots roasting conditions of the Al–Zr–Si system alloys
reference Roasting
method
t 300
t 300
C, hour
t 350
t 300 +350
C, 3 hours
t 400
t 350 +400
C, 3 hours
t 450
t 400 +450
C, 3 hours
t 500
t 450 +500
C, 3 hours
t 550
t 500 +550
C, 3 hours
t 600
t 550 +600
C, 3 hours
t 650
t 600 +650
C, 3 hours
Specific electrical resistivity (
) and Vickers hardness (HV) were measured for each condition. The —
value was determined by the eddy-current method on the VE-26NP device, then specific electric resistance
(
was calculated Vickers hardness was determined on the Wilson Wolpert 930 N hardness tester with the
following parameters: pressure-50 Н, hold time — 15 с.
Ingots and sheets metallurgical structure was studied on the light (SM) and electronic scanning
microscope (SEM) respectively: Axio Observer MAT and TESCAN VEGA 3. For polished section
preparations the electrolytic polishing and mechanical polishing were used under 12V voltage, electrolytic
conductor, which has 6 parts of C
2
H
5
OH, 1 part of HClO
4
and 1 part of glycerin.
Серия «Физика». № 4(80)/2015
Fine-structural investigation (f
JEM2100 electronic microscope (TE
of study foils obtained by the thinnin
For digital analysis of the phas
of phase — in the aluminum solid so
Metallographic ingots examin
between the experimental alloys, be
aluminum solid solution compositio
(see table 1).
Metallurgical structure observe
of the А7Е mark: phases inclusions
(Al) [12]. During the rolling proces
with the presence of ferrum were ex
The roasting has no appreciab
structural and phase conversion up
changes and strength, by the reports
(disregarding Fe and Si impurities)
Exception is the 02Zr and 03Zr allo
were made upon stable and metast
solubility in the solid solution of (A
ly higher by the metastable version a
Figure 2. Condition diagram
different roasting conditio
Special electrical resistivity dep
roasting is quite difficult (figure 3).
comparable to the experimental pr
revealed. Especially they are great u
has the difference in special electrica
As can be seen from the depe
minimum value of electrical resistiv
the zirconium concentration (C
Zr-(
calculated by the metastable version
There are two explanations of this s
in the (Al) is quite low, therefore tot
Roastin
first of all to indicate the Al
3
Zr precipitation)
EM) with high resolution and 200kW acceleration
ng-down of sheets were used.
se structure (components concentration calculatio
olution (Al) the Thermo-Calc (TTAL5 database)
Experiment results and their analysis
nation showed the difference absence in the
ecause the zirconium upon crystallization was ent
on (hereinafter (Al), Fe and Si concentration are
ed is similar with the electrotechnical aluminium
in the form of skeletal fragments or the boundar
ss equiaxial grain structure was changed to the fi
xtended too.
ble effect on the structure detectioned in the ligh
pon roasting were evaluated by the results of spe
s results as well. As per condition diagram the Al
) at all temperatures fall into the two-phase field
oys, which at the temperature 650
o
С should be
table equilibrium, in accordance with this D0
23
Al) increases under temperature over 400–450
o
С.
as well.
Al–Zr fragment with marked conditions of experimen
ons (table 2): dotted graph — the solvus of the L1
2
met
pendence of the experimental alloys on the tempe
When comparing with unalloyed aluminum, of w
recision, in the alloys with addition of zirconiu
upon maximum concentration of zirconium in the
al resistivity approximately of 5,4 Ohm
m10
-9
(o
endences, shown in the figure 3а, when multist
vity is observed under 450
o
С, it is explained by
(Al)
) in the aluminum solid solution. This con
n on which under such a temperature the C
Zr-(Al)
v
ituation. First, upon low temperature (below 400
tal decomposition process requires more time [14
ng effect on the electrical…
21
was carried out on the
n voltage. As the objects
on and the mass fraction
software was used.
metallurgical structure
tirely introduced into the
approximately the same
m metallurgical structure
ries of the dendritic cells
ibrous, phases inclusions
ht microscope, therefore
ecial electrical resistivity
l–Zr experimental alloys
d (Al)+Al
3
Zr (figure 2).
one-phase. Calculations
and L1
2
phases
[13]. Zr
Solubility is significant-
ntal alloys under
tastable phase
erature of the last step of
which resistivity value is
um a great changes are
e alloy (C
Zr
), 05Zr alloys
or
15%).
tep roasting is applied a
the maximum reduce of
ntradicts with the data,
value is very significant.
0
0
С) zirconium diffusion
4, 15]. By data [10] 500-
D.U.Smagulov, N.A.Belov, A.M.Dostayev
22
hours of roasting fewer than 300 °C
equilibrium solubilityof Zr in the (A
Figure 3. Temp
electr
Upon temperature increase th
softening upon temperature of 350
o
05Zr the hardness is high enough ev
Temperature effect of roasting
(SER) of the aluminum alloys hot-r
installations of continuous casting an
Using the calculations and exp
of concentrate) mostly depends on t
mum upon 3-hours of roasting at 45
cles of the L1
2
(Al
3
Zr) phase, determ
It is shown that a good alignme
the temperature of thermal heating w
1 Aluminum. Properties and physical m
Transl. from English. — М.: Metallurgy, 19
2 Belov N.A., Alabin A.N., Prokhorov
rolled aluminum sheets // Nonferrous-metals
3 US Patent 4402763 (publ. 09.06.198
4 Uliasz P., Knych T., Mamala A., Sm
VCH, Weinheim, 2008). — P. 248–255.
5 Zhou W.W., Cai B., Li W.J., Liu Z.X
Engineering. A 552. — 2012. — P. 353–358
6 Belov N.A. Principles of Optimising
Journal of Advanced Materials. — 1994, 1 (
7 Vorontsova L.A. Aluminum and alum
8 Booth-Morrison C., Dunand D.C., S
alloys // Acta Mater. 59. — 2011. — P. 7029
9 Knipling K.E., Karnesky R.A., Lee C
0.1Sc–0.1Zr (at.%) alloys during isochronal
10 Belov N.A., Alabin A.N., Prokhorov A
aluminum alloys wire lines of the Al-Zr-Fe-
va
Вестник Караг
C is not enough. Second, upon 450
o
С, there is p
Al), which is quiet lower than the metastable versi
perature effect of the last step of roasting on the specif
rical resistivity of the experimental alloys sheet
here is effect of C
Zr
is observed. In the 02Zr a
o
С and 400
o
С is observed respectively. In more h
ven at 450
o
С. At 500
o
С and above all alloys are s
Closing
g up to 650
o
С on hardness and specific electric
rolled sheets with 0,5 % wt of Zr in case of real
nd rolling.
perimental techniques we defined that SER (spec
the concentration of zirconium in the aluminum s
0
o
С. From the other hand, is conditioned with th
mining the thermo stability, maintaining of the me
ent of SER values, strength and thermo stability
will be 400–450
C, and concentration of zirconiu
References
metallurgy: Reference edition. Antony U.U., Elliot F.R., Bo
989, 324 p.
v A.Y. The effect of zirconium additives on the strength an
s industry. — 2009. — № 4. — P. 42–47.
83)
myrak B. Aluminium Alloys, edit. by J. Hirsch, B. Skrotzk
X., Yang S. Heat-resistant Al–0.2Sc–0.04Zr electrical condu
8.
g the Structure of Creep-Resisting Casting Aluminium Allo
(4). — P. 321–329.
minum alloys in electrical products. — M.: Energy, 1971. —
Seidman D.N. Coarsening resistance at 400 °C of precipitatio
9–7042.
C.P., Dunand D.C., Seidman D.N. Precipitation evolution in
aging // Acta Mater. 58. — 2010. — P. 5184–5195.
A.Y., Skvortsov N.V. Effect of intermediate roasting on the ele
Si system // Metallurgy and heat treatment of metals. — 201
гандинского университета
possibility to rely on the
on (for D0
23
phase).
fic
and 03Zr alloys there is
hydra metals of 04Zr and
softening.
cal resistivity is studied.
lization on the industrial
cific electrical resistivity
solid solution, it is mini-
he quanitity of nanoparti-
echanical hardening.
is possible to achieve, if
um is not below 0,3%.
oll М.D. / under ed. J.Е.Hatch:
nd electrical resistance of cold
ki and G. Gottstein (WILEY-
uctor // Materials Science and
oys Using Transition Metals //
— 224 p.
on-strengthened Al–Zr–Sc–Er
n Al–0.1Sc, Al–0.1Zr and Al–
ectrical resistivity of low-alloy
12. — № 4. — P. 14–19.
Roasting effect on the electrical…
Серия «Физика». № 4(80)/2015
23
11 Mondolfo L.F. The structure and properties of aluminum alloys: Translated from English. — M.: Metallurgy, 1979. — 640 с.
12 Belov N.A., Aksenov A.A., Eskin D.G. Iron in Aluminum Alloys: impurity and alloying element. — Fransis and Tailor, 2002.
— 360 p.
13 Sigli C. Zirconium Solubility in Aluminum Alloys (Proc. — ICAA9 Brisbane, (2004). — P. 1353–1358.
14 Lefebvre W., Danoix F., Hallem H., Forbord B., Bostel A., Marthinsen K. Precipitation kinetic of Al3(Sc,Zr) dispersoids in
aluminium // J. Alloys Compd. 470. — 2009. — P. 107–110.
15 Knipling K.E., Dunand D.C., Seidman D.N. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at
375–425 °C // Acta Mater. 56. — 2008. — P. 114–127.
Д.У.Смагулов, Н.А.Белов, А.М.Достаева
Al-0,5%Zr қорытпаларының электр кедергісіне күйдірудің əсері
Соңғы жылдары тіпті 250–300
о
С дейін қыздырудан кейін де сақталатын жоғары электрөткізгіштік
пен жеткілікті беріктіктен тұратын алюминий қорытпаларына деген қызығушылық артуда. A2E
маркалы техникалық алюминийден жасалған дəстүрлі сымдар бұл талаптарды қанағаттандырмайды,
себебі олар осындай температуралар кезінде қысқа мерзімді қыздырудан соң да беріксізденеді.
Мақалада құйма жəне беттер түрінде орындалған алюминий қорытпаларының меншікті электр
кедергісіне күйдірудің əсері зерттелген. Салқын илемделген беттерде ыдырау баяуырақ жүретіні
анықталған. 450
o
С кезінде күйдірілген беттерде электркедергісі мен қаттылықтың жақсы үйлесімді
мəніне қол жеткізуге болатыны көрсетілген.
Д.У.Смагулов, Н.А.Белов, А.М.Достаева
Влияние обжига на удельное электрическое сопротивление
Al-0,5%Zr сплавов
Изучено влияние режимов деформационно-термической обработки на удельное электросопротивле-
ние (УЭС) и твердость двух алюминиевых сплавов, содержащих 0,2 и 0,4% Zr и выполненных в виде
слитков и листов (холоднокатаных и горячекатаных). Установлено, что медленнее всего распад по-
следнего происходит в слитках, а наиболее быстро — в холоднокатаных листах. С использованием
функции желательности показано, что наилучшего сочетания значений УЭС, твердости и стойкости
к разупрочнению можно добиться в холоднокатаных листах сплава с 0,4% Zr, отожженного при 450
o
С.
Такой комплекс свойств обусловлен, главным образом, формированием достаточного количества на-
ночастиц фазы L12 (Al
3
Zr), которые определяют сохранение деформационного упрочнения.
24
Вестник Карагандинского университета
UDC 621.891(07):621.9.025.7:621.793.620.172
V.Ch.Laurinas
1
, A.Sh.Syzdykova
2
, E.N.Eremin
3
, S.A.Guchenko
1
, V.M.Yurov
1
1
Ye.A.Buketov Karaganda State University;
2
Polytechnic College Corporation «Kazakhmys», Balkhash;
3
Omsk State Technical University
(E-mail: weld_techn@mail.ru)
Достарыңызбен бөлісу: |