Қ АР АҒ АН Д Ы
У Н И В Е Р С И Т Е Т I Н I Ң
ÕÀÁÀÐØÛÑÛ
ÂÅÑÒÍÈÊ
К АР АГ АН Д И Н С К О Г О
У Н И В Е Р С И Т Е Т А
ISSN 0142-0843
ФИЗИКА сериясы
№ 4(80)/2015
Серия ФИЗИКА
Қазан–қараша–желтоқсан
30 желтоқсан 2015 ж.
1996 жылдан бастап шығады
Жылына 4 рет шығады
Октябрь–ноябрь–декабрь
30 декабря 2015 г.
Издается с 1996 года
Выходит 4 раза в год
Собственник РГП
Карагандинский государственный университет
имени академика Е.А.Букетова
Бас редакторы — Главный редактор
Е.К.КУБЕЕВ,
академик МАН ВШ, д-р юрид. наук, профессор
Зам. главного редактора
Х.Б.Омаров, д-р техн. наук
Ответственный секретарь
Г.Ю.Аманбаева, д-р филол. наук
Серияның редакция алқасы — Редакционная коллегия серии
К.К.Кусаиынов,
редактор д-р техн. наук;
Т.А.Кокетайтеги,
д-р физ.-мат. наук;
Н.Х.Ибраев,
д-р физ.-мат. наук;
А.О.Саулебеков,
д-р физ.-мат. наук;
К.М.Арынгазин,
д-р пед. наук;
И.В.Брейдо,
д-р техн. наук;
Митко Стоев,
д-р PhD (Болгария);
С.Д.Джуманов,
д-р физ.-мат. наук (Узбекистан);
М.М.Кидибаев,
д-р физ.-мат. наук (Кыргызстан);
З.Ж.Жанабаев,
д-р физ.-мат. наук;
Г.В.Климушева,
д-р физ.-мат. наук (Украина);
С.Е.Кумеков,
д-р физ.-мат. наук;
В.М.Лисицын,
д-р физ.-мат. наук (Россия);
И.Н.Огородников,
д-р физ.-мат. наук (Россия);
Г.И.Пилипенко,
д-р физ.-мат. наук (Россия);
С.В.Плотников,
д-р физ.-мат. наук;
А.Ж.Турмухамбетов,
д-р физ.-мат. наук;
К.Ш.Шункеев,
д-р физ.-мат. наук;
Л.В.Чиркова,
ответственный секретарь
канд. техн. наук
Адрес редакции: 100028, г. Караганда, ул. Университетская, 28
Тел.: (7212) 77-03-69 (внутр. 1026); факс: (7212) 77-03-84.
E-mail: vestnick_kargu@ksu.kz. Сайт: vestnik.ksu.kz
Редактор И.Д.Рожнова
Редакторы Ж.Т.Нұрмұханова
Техн. редактор Д.Н.Муртазина
Издательство Карагандинского
государственного университета
им. Е.А.Букетова
100012, г. Караганда,
ул. Гоголя, 38,
тел., факс: (7212) 51-38-20
e-mail: izd_kargu@mail.ru
Басуға 29.12.2015 ж. қол қойылды.
Пiшiмi 60
84 1/8.
Офсеттік қағазы.
Көлемi 10,0 б.т.
Таралымы 300 дана.
Бағасы келiсiм бойынша.
Тапсырыс № 315.
Подписано в печать 29.12.2015 г.
Формат 60
84 1/8.
Бумага офсетная.
Объем 10,0 п.л. Тираж 300 экз.
Цена договорная. Заказ № 315.
Отпечатано в типографии
издательства КарГУ
им. Е.А.Букетова
© Карагандинский государственный университет, 2015
Зарегистрирован Министерством культуры и информации Республики Казахстан.
Регистрационное свидетельство № 13111–Ж от 23.10.2012 г.
2
Вестник Карагандинского университета
МАЗМҰНЫ
СОДЕРЖАНИЕ
КОНДЕНСАЦИЯЛАНҒАН
КҮЙДІҢ ФИЗИКАСЫ
ФИЗИКА КОНДЕНСИРОВАННОГО
СОСТОЯНИЯ
Чиркова Л.В., Ермағанбетов Қ.Т., Аринова Е.Т.
Шалаөткізгіштердегі
тұрақсыздық
жəне
фазалық көшудегі ұқсастық ...............................
4
Chirkova L.V., Ermaganbetov K.T., Arinova E.T.
Electronic mechanisms of instability in semicon-
ductor structures ....................................................
4
Сергеев Д.М., Балмұхан И.Н. Шашырау мат-
рицасы негізінде барьердің салыстырмалы
биіктігі h
b
= 3 тең асқын өткізгіш туннельдік
ауысымның
вольтамперлік
сипаттамасын
есептеу туралы ....................................................
12
Сергеев Д.М., Балмухан И.Н. О расчете вольт-
амперной характеристики сверхпроводящего
туннельного перехода на основе матрицы
рассеяния при относительной высоте барьера
h
b
= 3 .....................................................................
12
Смагулов Д.У., Белов Н.А., Достаева А.М.
Al-0,5%Zr қорытпаларының электр кедергісі-
не күйдірудің əсері .............................................
19
Smagulov D.U., Belov N.A., Dostayeva A.M.
Roasting effect on the electrical resistivity of the
Al-0,5%Zr alloys ...................................................
19
Лауринас В.Ч., Сыздыкова А.Ш., Еремин Е.Н.,
Гученко С.А., Юров В.М. Қоспалы болат
қабыршақтарының тотығу тұрақтылығы жəне
қызуға төзімділігі................................................
24
Laurinas V.Ch., Syzdykova A.Sh., Eremin E.N.,
Guchenko S.A. , Yurov V.M. High-temperature
strength and corrosion resistance of alloy steel
coatings .................................................................
24
ЖЫЛУ ФИЗИКАСЫ
ЖƏНЕ ТЕОРИЯЛЫҚ ЖЫЛУ ТЕХНИКАСЫ
ТЕПЛОФИЗИКА
И ТЕОРЕТИЧЕСКАЯ ТЕПЛОТЕХНИКА
Бакланов А.Е., Григорьева С.В., Яковлев А.Н.
Математикалық модельдеудің жылу массасын
тасымалдау жүйесіндегі жоғарғы қуатты
жарық диодының бөлінуі ...................................
31
Бакланов А.Е., Григорьева С.В., Яковлев А.Н.
Математическое моделирование тепломассо-
переноса в системе теплоотвода для свето-
диода высокой мощности ...................................
31
Шуюшбаева Н.Н., Құсайынов К., Стоев М., Шай-
мерденова К.М., Оспанова Д.А., Ахмадиев Б.А.,
Саденова К.К. U-тəрізді жер асты жылу-
алмастырғыштары
маңындағы
темпера-
тураның өзгерісін зерттеу ..................................
39
Shuyushbayeva N.N., Kussaiynov K., Stoev M.,
Shaimerdenova K.M., Ospanova D.A., Akhma-
diev B.A., Sadenova K.K. Study of regularities of
changes in the temperature near the U-shaped
ground heat exchangers .........................................
39
АСПАПТАР ЖƏНЕ ЭКСПЕРИМЕНТ
ТЕХНИКАСЫ
ПРИБОРЫ И ТЕХНИКА
ЭКСПЕРИМЕНТА
Зейниденов А.К., Ибраев Н.Х., Айтбаева Ж.М.
Анодтау əдісімен наноқұрылымдық кеуекті
оксид алюминийді алуға арналған техникасын
жəне əдісін əзірлеу..............................................
43
Зейниденов А.К., Ибраев Н.Х., Айтбаева Ж.М.
Разработка техники и методики получения
наноструктурированного пористого оксида
алюминия методом анодного окисления ...........
43
Ибраев Н.Х., Афанасьев Д.А., Серіков Т.М.,
Аманжолова Г.С. Кеуекті титан диоксидін
синтездеу үшін магнетронды тозандандыру
əдісімен титан қабыршақтарын алу ..................
48
Ибраев Н.Х., Афанасьев Д.А., Сериков Т.М.,
Аманжолова Г.С. Получение пленок титана
методом магнетронного распыления для син-
теза пористых пленок диоксида титана .............
48
ТЕХНИКАЛЫҚ ФИЗИКА
ТЕХНИЧЕСКАЯ ФИЗИКА
Айкеева А.А., Жəутіков Б.А., Роговая К.С.,
Жəутіков Ф.Б., Мухтарова П.А. Электромаг-
ниттік көтергіш қондырғысының «скип-
бағыттаушы құрылғы» жүйесін зерттеу ...........
57
Айкеева А.А., Жаутиков Б.А., Роговая К.С.,
Жаутиков Ф.Б., Мухтарова П.А. Исследова-
ние системы «скип-направляющее устройст-
во» электромагнитной подъемной установки ...
57
Молнар А.А., Куритник И.П., Герасимов В.В.,
Карабекова Д.Ж. «Адам–киім» жүйесінде
портативті электронды құрылғылар үшін
пьезоэлектрлікті
электр
энергиясы
көзі
ретінде пайдалану ...............................................
62
Молнар А.А., Куритник И.П., Герасимов В.В.,
Карабекова Д.Ж. Пьезоэлектричество как ис-
точник электроэнергии для портативных элек-
тронных устройств в системе «человек–
одежда» ................................................................
62
Содержание
Серия «Физика». № 4(80)/2015
3
ФИЗИКАНЫ ОҚЫТУ ƏДІСТЕМЕСІ
МЕТОДИКА ПРЕПОДАВАНИЯ ФИЗИКИ
Карбозова А.К., Маханов К.М., Мустафина А.М.,
Маукебаева М.А. NXT-технологиясын мектепте
робототехника негіздерін меңгеру үшін
қолдану ................................................................
66
Карбозова А.К., Маханов К.М., Мустафина А.М.,
Маукебаева М.А. Применение NXT-технологий
в преподавании школьного курса физики .........
66
АВТОРЛАР ТУРАЛЫ МƏЛІМЕТТЕР ...........
73
СВЕДЕНИЯ ОБ АВТОРАХ ..............................
73
2015 жылғы «Қарағанды университетінің ха-
баршысында» жарияланған мақалалардың
көрсеткіші. «Физика» сериясы ..........................
75
Указатель статей, опубликованных в «Вест-
нике Карагандинского университета» в 2015
году. Серия «Физика» .........................................
75
4
Вестник Карагандинского университета
КОНДЕНСАЦИЯЛАНҒАН КҮЙДІҢ ФИЗИКАСЫ
ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ
UDC 621.383: 537.311.33
L.V.Chirkova
1
, K.T.Ermaganbetov
1
, E.T.Arinova
2
1
Ye.A.Buketov Karaganda State University;
2
Gimnasium № 1, Karaganda
(E-mail: ket3853@mail.ru)
Electronic mechanisms of instability in semiconductor structures
Semiconductor crystals are difficult dynamic systems in which emergence of electric not stability is possible
(failure of current, spontaneous fluctuations of current or tension, switching and a hysteresis in volt —
the ampere characteristic, etc.). This instability meets in many materials, in different temperature areas and
at various levels of excitement. In article instability of some branches of volts — the ampere characteristic
of semiconductor devices — existence of the negative differential conductivity (NDC) of S-and N-of types is
considered. It is shown that NDC are connected with not stability operated by tension or current. The main
electronic mechanisms resulting in negative differential conductivity are considered.
Key words: a semiconductor crystal, instability, negative differential conductivity, volt — the ampere charac-
teristic.
The semiconductor which is under strong external influence finds essential nonlinear behavior: emergence
of considerable deviations from a linear ratio between current and tension (violation of the law of Ohm), emer-
gence of not stability is possible (interruptions of current, fluctuation and a gallop of current switching and
a hysteresis in the volt-ampere characteristic, etc.).
Big electric and magnetic fields, high level of current injection and light excitement can be external
influences.
Listed above instability meet in many materials, in different temperature areas, at various levels
of excitement [1–3]. Often they have negative impact on characteristics of semiconductor devices, but in cer-
tain cases they are used for the special purposes. For example, for generation of microwave radiation in the
range from 0,1 to 1000 GHz, for strengthening in the gigahertz range of frequencies i.e. where ordinary tran-
sistors can't be used [3, 4].
It is known that the volt-ampere characteristic of the I(U) semiconductor which is measured in station-
ary conditions, most fully reflects nature of transfer of carriers of a charge. This characteristic depends on
microscopic properties of volume of the semiconductor. These properties define dependence of density of
current of j on local electric field E and from parameters of contacts. It is often possible to be limited to a
local static scalar product of j(Е).
If dependence of j(Е) has area of the negative differential conductivity (NDC)
0,
дифф
dj
dE
(1)
that is, if density of current decreases with growth of electric field (or increases at reduction of a field), re-
spectively stationary states will be unstable. In this case the size of current will depend on other chain which
part even in the absence of external load resistance resistive and jet elements surely are (resistance and in-
ductance of wires, mutual inductance and capacity).
Depending on what of letters of the Latin alphabet — N or S — reminds the form of the characteristic
of j(Е), distinguish NDC N-or S-of type. The characteristic type of the specified characteristics is given in
figure 1.
Electronic mechanisms of instability…
Серия «Физика». № 4(80)/2015
5
Figure 1. Dependences of j (Е) for NDC of N-type (а) and S-type (b)
The tunnel diode and Gunn diode belong to devices with NDC N-of type. The avalanche-transit (ATD)
diode, multilayered devices such as thyristor, as p-n-p-n-and p-i-n-diodes, thermal and electro thermal
switches, switches on elements Ovshinsky ovonic memory in the type NDC S-type.
NDC N-and S-of types are connected with instability which voltage or current. In case of density NDC
N-of current is single valued function of a electric field. Thus it is necessary to consider that the electric field
is ambiguously: the E(j) function in a certain area of values j has treble coursing [4]. The case of NDC S-of
type is complementary, i.e. E and j are interchanged the position. NDC N-and S-of types are connected with
instability which voltage or current. In case of density NDC N-of current is single valued function of a elec-
tric field. Thus it is necessary to consider that the electric field is ambiguously: the E(j) function in a certain
area of values j has treble coursing [4, 5]. The case of NDC S-of type is complementary, i.e. E and j are
interchanged the position.
Also combinations of NDC N-and S-of types are possible: they can replace each other on the static
characteristic at increase of electric field; perhaps eventually transformation of the characteristic from
S-figurative in N-figurative; at last, the static characteristic can have more difficult form, with a complex
shapes of current and tension. Also combinations of NDC N-and S-of types are possible: they can replace
each other on the static characteristic at increase of electric field; perhaps eventually transformation of the
characteristic from S-figurative in N-figurative; at last, the static characteristic can have more difficult form,
with a complex shapes of current and tension.
The volt — the ampere characteristic of the semiconductor can be calculated, using dependence of j from
E, having carried out integration of density of current of j on the flow area s and a field E on testing length:
;
I
jds
(2)
0
.
z
l
U
E z dz
(3)
In distinction from dependence of j(Е) which is defined by properties of volume of semiconductor ma-
terial, volt — ampere characteristic of I(U) depends also on geometry of a sample, boundary conditions and
contacts. However, if the steady state spatially is uniform and resistance of contacts can be neglected in
comparison with semiconductor volume resistance, dependences of j(E) and I(U) are similar, i.e. can be re-
duced to one curve by change of scale.
As a rule, NDC connect with instability of a uniform steady state in relation to spatial fluctuations of
electric field and concentration of carriers that leads to spatially non-uniform distributions of density of cur-
rent or field [1, 4]. Thus the usual thermodynamic explanation of such spatial structures is unsuitable as NDC
comes when the system is taken far away from a condition of thermal balance.
Figure 2. A chain with NDC-an element
The example of the elementary chain with the element having NDC is given in figure 2. NDC – an ele-
ment is included consistently with the load resistor R and a source of tension.
b
L.V.Chirkova, K.T.Ermaganbetov, E.T.A
6
The load line of an element ha
Crossing of a load straight lin
Working points at a negative differe
of a spatial charge (formation of no
emergence of the oscillations determ
1 — w
Figure 3. Dep
By the form characteristics of
conclusions. In case of N-or S-of the
acteristic of I (U) and the load line
parallel to itself and points of interse
tangent to the characteristic, there is
a point of intersection — bifurcatio
with loss or change of stability of br
In the case under consideration
another is unstable though in both ca
Negative differential conductio
sition, and the phenomena in volum
conductor devices (tunnel diodes, d
p-n-p-n-the diode NDC mechanisms
Operation of the tunnel diode
sidered by authors in [6].
In p-n-p-n-the diode S-the figu
ture. Many p-n-p-n-options of stru
known. The elementary four-layer st
consecutive p-n-of transitions and tw
When giving on Shokley diod
Extreme p-n-transitions are displace
Arinova
Вестник Караг
as an appearance (fig. 3)
0
.
U
U
I
R
e about BAX of the device defines a working p
ential indicator of dI/dU < 0 often are unstable in
on-uniform distribution of a field or density of cu
mined by an external chain.
working point, 2 — a load line on a direct current
endence of current on tension on an element with NDC
I ( U) and to position of the load line can be mad
e figurative characteristic of I (U) three points of
are possible. At change of the enclosed tension t
ection move according to the characteristic of
I
(U
s a merge of two points of intersection, and at furt
on of the elementary type. Generally bifurcation
ranches of various decisions.
n it means that one of two merging points of in
ases the differential indicator is negative.
on is shown via mechanisms which are defined b
me of the semiconductor. These mechanisms are
iodes Gunn, avalanche-transit diode, etc.). So, in
s are caused by the phenomena in p-n-transition.
and the mechanism of emergence of type ODP N
urative characteristic of I (U) is realized. This dev
ucture, including a thyristor or the operated sem
tructure (a dynistor, a diode thyristor or Shockley
wo ohmic — the anode and the cathode (fig. 4).
Figure 4. Structure of the Shokley diode
de of direct tension it can be in two steady stat
ed thus in the direct direction (optical transitions
гандинского университета
(4)
point on a direct current.
relation to heterogeneity
urrent) and in relation to
C
de the following general
f intersection of the char-
the load line is displaced
U). When the load line is
ther change there will be
ns are closely connected
ntersection is steady, and
by p-n-properties of tran-
e realized in many semi-
n the tunnel diode and in
N-in it are in detail con-
vice has four-layer struc-
miconductor rectifier are
y diode) consists of three
tes: closed and opened.
s), average p-n-transition
Серия «Физика». № 4(80)/2015
is displaced in the opposite direction
a site of a direct branch BAX betwe
of switching is a point to CVC in w
reaches the maximum value. The
impedance site of a direct branch CV
characteristic there is transitional a s
Figure 5. BA
The most part of external dire
branch BAX of the Shokley diode i
BAX). With increase in the anode te
emitter transitions increases. The el
are involved by a field of collector t
ture is interfered by a small potentia
ing appeared in a potential hole of
potential barrier of the right emitter
The injected holes diffuse to co
p-base. Their further advance on st
emitter transition now. Thus, in p-to
increase in injection of electrons fro
Thus, when giving on p-n-p-n-
ductivity (the small size of current
(optical) transitions direct shift, and
distribution of potential in the devic
direct, i.e. unlocking. S-the figurativ
Lead 4 main mechanisms t
nonmonotonic dependence of densit
in some range E can be caused by n
of electrons or temperatures of a latt
There are some types of nonlin
ing on border Brillouin zone. Gan
strengthening of the Microwave rad
intervalley electron transfer from a
of strong electric field (Е > 3 Sq/s).
tures, connections
,
III
Y
A B in partic
ture of GaAs is given in figure 6.
Electronic m
n (collector transition). The closed condition of a
en a zero point and a point of switching (fig. 5, s
which differential resistance is equal to zero, an
open condition of a dynistor corresponds to a
VC (fig. 5, site 2 to CVC). Between sites 1 and 2
site corresponding to an unstable condition of stru
AX and power charts of Shokley diode (diode thyristor)
ect tension falls on collector transition therefore
is similar to the return branch BAX of the rectifi
ension enclosed between the anode and the catho
lectrons injected from emitter n-in p-base diffus
transition and get to n-base (fig. 5). Further advan
al barrier of the right emitter transition. Therefor
n-of base, forms an excess negative charge whi
transition, causes increase in injection of holes fr
ollector transition, are involved by a field of colle
tructure of the diode is interfered by a small pot
o base there is an accumulation of an excess positi
m emitter n-.
-the diode as whole direct tension two states are
is I) and with high conductivity (big size I). In t
d on average (collector) transition — blanking o
ce is nonmonotonic dependence and such that on
ve characteristic of the I (V) is as a result formed.
to emergence of NDC determined by prope
ty of current of j on a field E leading to a negativ
onlinearity of mobility, concentration of carriers
tice [3, 4].
nearity of mobility or drift instability: Gann, and in
nn nonlinearity of mobility is used in Gunn di
diation frequencies over 1 GHz. NDC mechanism
state with high mobility in a state with low mob
As material for production of semiconductor de
cular, GaAs gallium arsenide serve. The schemat
mechanisms of instability…
7
a dynistor corresponds to
ite 1 to CVC). The point
nd tension on a dynistor
a low-voltage and low-
2 of volts — the ampere
ucture.
)
the first site of a direct
fier diode (fig. 5, a site 1
ode direct tension and on
se to collector transition,
nce of electrons on struc-
e, part of electrons, hav-
ch, lowering height of a
rom emitter p-in n-base.
ector transition and get to
tential barrier of the left
ive charge that promotes
possible: with low con-
the first case on extreme
ffset. In the second case
all three transitions shift
erties of volume. The
e differential condactans
of a charge, temperature
nstability, Bragg scatter-
iode for generation and
m in this case is based on
bility under the influence
evices with similar struc-
tic image of zonal struc-
L.V.Chirkova, K.T.Ermaganbetov, E.T.Arinova
8
Вестник Карагандинского университета
Figure 6. Zonal structure of a zone of conductivity of GaAs
In weaker electric field almost all electrons are in the main minimum where the effective mass of m * is
small (
*
0
0,07
,
m
m
0
m -the mass of an electron). Therefore, their mobility is great. At increase in a field E
electrons "are warmed" and gain the energy sufficient for transition to the side valley with higher energy in a
minimum, but with a bigger effective weight and, therefore, with lower mobility. In process of transition of
the increasing number of electrons their average mobility sharply decreases, the current density determined
by expression
( )
j en E E
also decreases. Negative differential mobility results. When the majority of elec-
trons appears in the side valley, j will start increasing again. Thus the characteristic with type NDC N-turns
out. Other NDC mechanisms connected with nonlinearity of mobility are caused by anisotropy of equivalent
side valleys.
Other NDC mechanisms connected with nonlinearity of mobility are caused by anisotropy of equivalent
side valleys. For example, Erlbah instability in Ge is caused by not diagonal elements of a tensor of differen-
tial conductivity Other NDC mechanisms connected with nonlinearity of mobility are caused by anisotropy
of equivalent side valleys. For example, Erlbah instability in Ge is caused by not diagonal elements of a ten-
sor of differential conductivity
/
.
dj
dE
Let there is a case of two equivalent side valleys 1 and 2 which axes of anisotropy have the different di-
rections. Electric field E is enclosed in the direction x, symmetric concerning these two valleys. Then j cur-
rent will also be directed lengthways x. Further we will assume that the field slightly deviates the direction x
so effective weight for conductivity in the valley 1 will exceed that in the valley 2. Speed with which elec-
trons absorb energy of electric field (speed of a warming up of electrons) is inversely proportional to effec-
tive weight for conductivity. Therefore in the valley the 2nd electrons will be warmed more strongly, than in
the valley 1. By means of intervalley dispersion electrons will pass from hotter valley (the valley 2) in colder.
(the valley 1) and in the valley of 1 electrons will become more, than in the valley 2. Reduction of filling of
the valley with higher mobility will lead to a negative contribution to current in the direction of y that can
result in cross negative conductivity (type NDC N).
Generative recombinational instability (instability GR) or instability caused by nonlinearity of concen-
tration of carriers of a charge are characterized by nonlinear dependence of concentration of carriers in a
steady state from a field E. It results in nonmonotonic dependence of density of current on a field with NDC
N-or S-of types. Such dependence is caused by redistribution of electrons between a zone of conductivity and
the connected states in the course of a warming up of electronic gas.
GR — coefficients usually depend on electric field. Especially strong dependence takes place for in-
crease in section of capture of carriers by the impurity centers with growth of a field and for processes of
shock ionization of carriers from impurity levels.
Capture of electrons on deep impurity levels demands overcoming of a Coulomb potential barrier by
them. Therefore the coefficient of capture increases with a field E. and concentration of free carriers decreas-
es with growth of a field, dn/dE < 0, and differential conductivity equal
/
/
dj dE e n Edn dE
can be-
come negative. In stronger fields the coefficient of ionization increases, and concentration of carriers starts
growing with a field. It results in positive differential conductivity. So there is N-figurative j(Е) the charac-
teristic. Also shock ionization of carriers from impurity levels (small donors or deep traps) or ionization
(avalanche breakdown) can lead to ODP. If the free carrier of current received sufficient kinetic energy in
electric field, it can give this energy at collision to the connected carrier. The last then gets to a conductivity
zone (electron) or to a valent zone (hole). As a result there is one more free carrier which can make one more
act of shock ionization in turn. The fast increase in concentration of free carriers is as a result observed. In
the electric fields exceeding threshold values for, necessary for a warming up of carriers to the energy suffi-
Серия «Физика». № 4(80)/2015
cient for ionization, the coefficient o
tain conditions such processes can le
The phenomena in volume of
and flying diode and p-i-n-of the dio
P-i-n-the diode consists of a la
of p-and n-of types (fig. 7). The ma
If n-a layer of the diode to connect to
to the center with own conductivity
nation of acceptor type with the big
capture for electrons. Besides, we w
pletely occupied with electrons. Th
barrier»: the most part of the injecte
p-i-. The injected electrons thus will
Figure 7. Th
Resultant current of electrons i
centration of the injected electrons a
the high level of injection, on each
electrons pass i-a layer. At rather hi
mately identical. In this case current
Thus, at this size of the enclose
ized by the small size of current, th
created by carriers of one sign and
this case the recombination centers
termediate states there is NDC.
Avalanche-transit diodes have
duction of carriers of current at the
nents.
Fi
When total tension exceeds pen
couples generated in narrow part of
ionization are divided by a field. Th
ture until these carriers don't go beyo
If to impose an alternating vo
ductance if the part of carriers drift
phase of current on a corner π conce
Increase of tension all the time
rent growth. It testifies that for this
tions the condition of a negative con
Electronic m
of shock ionization sharply increases with growth
ead to type NDC S [7, 8].
the semiconductor leading to NDC are the corne
ode.
ayer of the not alloyed semiconductor material co
ajority of switching microwave radiation — diod
o minus, and p-a layer — to tension source plus, e
(i-a layer). Let's say that i-a layer contains the de
cross section of capture for holes and considerab
will assume that in a condition of thermal balanc
en at the low level of injection for holes there w
ed holes will be taken the recombination centers
l freely pass i-a layer.
he diode with p-i-n-structure (and) and its power chart
is limited to the volume charge formed by the in
and holes exceeds concentration of the centers of
center of a recombination there is a taken hole,
igh level of injection of concentration of electron
t is transferred by quasineutral electronic hole pla
ed tension two steady stationary states are possib
hus the recombination centers are occupied with
is limited by a spatial charge. The second is a s
are filled with holes, and current is caused by th
structure p
n n
(fig. 8). They work in the m
e return shift of electric transition having consta
gure 8. Structure of avalanche-transit diode
netrative, shock ionization — avalanche breakdow
f p-n-of transition where intensity of electric fiel
he current caused by the movement of new carrie
ond transition p-n-.
ltage on continuous return shift, emergence of a
ts against variation electric field is possible. It co
erning tension.
e will be followed by reduction of current, and red
s frequency of an alternating voltage during the
nductance is satisfied.
mechanisms of instability…
9
h of a field E. Under cer-
erstone of the avalanche
oncluded between layers
des has similar structure.
electrons will be injected
eep centers of a recombi-
ble the smaller section of
e these centers are com-
will be «a recombination
near injecting transition
njected electrons. If con-
f a recombination, i.e. at
and excess holes just as
ns and holes are approxi-
asma.
le. The first is character-
electrons, and current is
state with big current. In
he injected plasma. In in-
mode of avalanche repro-
ant and variable compo-
wn begins. Electron-hole
ld is sufficient for shock
ers passes through struc-
a negative variable con-
orresponds to delay of a
duction of tension – cur-
entire period of fluctua-
L.V.Chirkova, K.T.Ermaganbetov, E.T.Arinova
10
Вестник Карагандинского университета
At reduction in the frequency of an alternating voltage current will lag behind tension on a corner,
smaller π as time of flight and a lag effect of shock ionization don't change. When with reduction in the fre-
quency of an alternating voltage phase shift between current and tension makes π/2, conditions of a negative
conductance will be satisfied only throughout a half of the period, alternating through everyone a quarter of
the period with conditions of positive differential resistance. In this limit case on average for the period the
avalanche and flying diode won't possess a negative conductance. Thus, in case of avalanche and flying di-
odes the combination of the effects connected with shock ionization and final time of flight of carriers works.
All mechanisms of emergence of ODP considered in article are purely electronic, based on violation of
balance in system of carriers by electric field. At the same time it should be noted that there is rather big va-
riety electro thermal, the ODP acoustoelectric mechanisms, mechanisms connected with instability of the
magnetized plasma, etc. which consideration is beyond this article.
References
1 Шёлль Э. Самоорганизация в полупроводниках. Неравновесные фазовые переходы в полупроводниках, обусловлен-
ные генерационно-рекомбинационными процессами / Шёлль Э. — М.: Мир, 1991.
2 Аскеров Б.М. Электронные явления переноса в полупроводниках. — М.: Наука, 1985.
3 Бонч-Бруевич В.Л., Звягин И.П., Миронов А.Г. Доменная электрическая неустойчивость в полупроводниках. — М.:
Наука, 1972.
4 Ансельм А.И. Введение в теорию полупроводников. — Л.: Наука, 1978.
5 Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы: Учебник для вузов. — М.: Высш. шк., 1987.
6 Chirkova L., Ermaganbetov K.T., Arinova E.T. Instability in the semiconductor structures as self-organization manifestation
// Education and science without borders. — 2013. — Vol. 4. — No 7 (1/2013). — P. 132–134.
7 Пожела Ю.К. Плазма и токовые неустойчивости в полупроводниках. — М.: Наука, 1977.
8 Zhanabaev Z.Zh. Information Properties of self-organizing Systems // NewsNat.Acad. of Science RK. — 1996. — № 5. —
P. 14–19.
Л.В.Чиркова, Қ.Т.Ермағанбетов, Е.Т.Аринова
Достарыңызбен бөлісу: |