Бір белгісізі бар теңдеулер.
Бір белгісізі бар бірінші дәрежелі теңдеуді қарастырайық:
а1х + а0 = 0 (1)
Теңдеудің а0, а1 коэффициенттері бүтін сандар болсын.
Бұл теңдеудің шешімі
х =
бүтін сан болады, егер де а0 саны а1 санына қалдықсыз бөлінсе. Бұдан шығатын қорытынды, (1) теңдеуді бүтін сандар жиынында шешу барлық уақытта мүмкін емес. Мысалы үшін 3х – 27 = 0 және 5х + 21 = 0 теңдеулерін қарастырайық. Бірінші теңдеудің шешімі х = 9, ал екінші теңдеудің бүтін сандар жиынында шешімі жоқ.
Мұндай жағдайлармен екінші дәрежелі теңдеулерді шешкенде де кездесеміз: х2 + х – 2 = 0 теңдеуінің х1 = 1, х2 = -2 бүтін шешімдері бар; ал х2 – 4х + 2 = 0 теңдеуінің бүтін сандар жиынында шешімі жоқ, себебі оның шешімі х1, 2 = иррационал сан.
an x n + an-1 x n-1 + … + a1 x + a0 = 0 (n ≥ 0) (2)
түріндегі бүтін коэффициентті n – ші дәрежелі теңдеулер оңай шешіледі. Шындығында, х = а теңдеудің бүтін түбірі болсын. Сонда
an a n + an-1 a n-1 + … + a1 a + a0 = 0,
a0 = - а (ana n-1 + an-1a n-2 + … + a1).
Соңғы теңдіктен a0 санының а санына қалдықсыз бөлінетіні көрініп тұр, бұдан (2) теңдеудің әрбір бүтін түбірі теңдеудің бос мүшесінің бөлгіші болатынына көз жеткіземіз.
Мысалы: х 10 + х7 + 2х3 + 2 = 0 және х 6 - х5 + 3х4 +х2 – х + 3 = 0
теңдеулерін қарастырайық. Бірінші теңдеудің бос мүшесінің бөлгіштері 1, -1, ,2 және -2. Соның ішінде тек қана -1 теңдеудің шешімі болады. Теңдеудің жалғыз х = -1 шешімі бар. Осы әдіспен екінші теңдеудің бүтін сандар жиынында шешімі жоқ екенін көрсетуге болады.
Достарыңызбен бөлісу: |