Метод разделения переменных (или метод Фурье) является типичным для решения многих задач математической физики. Пусть требуется найти решение уравнения
удовлетворяющее краевым условиям:
u (0, t) = 0, (108)
u (ℓ, t) = 0, (109)
u (x, 0) = ƒ(x), (110)
Будем искать (не равное тождественно нулю) частное решения уравнения (107), удовлетворяющее граничным условиям (108) и (109), в виде произведения двух функций X(x) и T(t), из которых первая зависит только от х, вторая только от t:
u (x, t) = X (x) T (t). (112)
Подставляя в уравнение (107), получаем:
X (x) T′′(t) = a2 X′′(x) T(t).
Разделив члены равенства на a2 XT
В левой части этого равенства стоит функция, которая не зависит от х, слева – функция, не зависящая от t. Равенство (113) возможно только в том случае, когда левая и правая части не зависят ни от х, ни от t, т. е. равны постоянному числу. Обозначим его через – λ, где λ > 0 ( позднее будет рассмотрен случай λ < 0). Итак,
Из этих равенств получаем два уравнения:
X′′ + λX = 0, (114)
T′′ + a2 λT = 0. (115)
Общие решения этих уравнений будут:
где A, B, C, D – произвольные постоянные.
Подставляя выражения X(x) и T(t) в равенство (112), получим:
Подберем теперь постоянные А и В так, чтобы удовлетворялись условия (108) и (109). Так как T (t) тождественно неравна нулю (в противном случае u (x, t) ≡ 0, что противоречит поставленному условию),то функция X (x) должна удовлетворять условиям (108)
и (109), т. е. должно быть Х (0) =0, Х (ℓ) = 0. Подставляя значения х=0 и х = ℓ в равенство (116), на основании (108) и (109) получаем:
0 = А · 1 + В · 0,
Из первого уравнения находим А = 0. Из второго следует:
В ≠ 0, так как в противном случае было бы Х ≡ 0 и u ≡ 0, что противоречит условию. Следовательно, должно быть
откуда
(мы не берем значение n = 0, так как в этом случае было бы Х ≡ 0 и u ≡ 0). Итак, мы получили:
Найденные значения λ называются собственными значениями для данной краевой задачи. Соответствующие им функции Х (х) называются собственными функциями. Замечание. Если бы мы знали вместо – λ выражение + λ = k2, то уравнение (114) приняло бы вид
Х′′- k2Х = 0.
Общее решение этого уравнения:
Х = Аekx + Be -kx .
Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (108) и (109).
Зная λ1/2, мы пользуясь равенством (117) , можем написать:
Для каждого значения n, следовательно, для каждого λ, выражения (119) и (120) подставляем в равенство (112)и получаем решение уравнения (107), удовлетворяющее граничным условиям (108) и (109). Это решение обозначим un (x, t):
Для каждого значения n мы можем брать свои постоянные C и D и потому пишем Cn и Dn (постоянная В включена в Cn и Dn). Так как уравнение (107) линейное и однородное, то сумма решений также является решением, и потому функция, представленная рядом
или
также будет решением дифференциального уравнения (107), которое будет удовлетворять граничным условиям (108) и (109). Очевидно, ряд (122) будет решением уравнения (107) только в том случае, если коэффициенты Cn и Dn таковы, что этот ряд сходится в ряды получающиеся после двукратного почленного дифференцирования по х и по t.
Решение (122) должно еще удовлетворять начальным условиям (110) и (111). Этого мы будем добиваться путем подбора постоянных Cn и Dn. Подставляя в равенство (122) t = 0, получим :
Если функция ƒ(x) такова, что в интервале (0, ℓ) ее можно разложить в ряд Фурье, то условие (123) будет выполняться, если положить
Далее, дифференцируем члены равенства (122) по t и подставляем t = 0. Из условия (111) получается равенство
Определяем коэффициенты Фурье этого ряда:
или
Итак, мы доказали, что ряд (122), где коэффициенты Cn и Dn определены по формулам (124) и (125), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (107) и удовлетворяет граничным и начальным условиям (108) – (111).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (122) представляет собой решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция ƒ(x) должна быть дважды дифференцируемой, а функция φ(x) – один раз дифференцируемой.