https://bilimland.kz/kk/subject/algebra/10-synyp/funkcziyanyng-nuktedegi-shegi-funkcziyanyng-uzilissizdigi?mid=f599cbe0-9ee4-11e9-a361-1f1ed251dcfe
Функцияның нүктедегі және жиындағы үзіліссіздігі
Егер f(x)=f(x0) (1) шарты орындалса, f(x) функциясы x0 нүктесінде үзіліссіз деп аталады. Бұның мағынасы:
f функциясының х0 нүктемінде анықталғандығы қажет.
f функциясы белгілі бір >0 саны үшін (x0-x0+), (x0-x0), (x0, x0+) жиындарының бірінде анықталуы қажет.
х нүктесі х0-ге сол жағынан да ақырсыз жақындағанда f(x) f(x0)-ге ақырсыз жақындау керек.
х-х0=һ=∆x сандары функцияның аргументінің х0 нүктесіндегі өсімшесі деп, ал оған сәйкес: ∆y=f(x)-f(x0)=f(x0+h)-f(x0)=f(x0+∆x)-f(x0) саны функцияның өсімшесі деп аталады.
«Өсімше» терминін қолданып, үзіліссіздіктің анықтамасын былай айтуға болады:
Анықтама-2. Егер тәуелсіз айнымалының х0 нүктесіндегі өсімшесі нольге ұмтылғанда оған сәйкес f функциясының өсімшесі нольге ұмтылса, онда f функциясы х0 нүктемінде үзіліссіз деп аталады.
Шектің анықтамасын тікелей қолдансақ, онда үзіліссіздіктің келесі екі анықтамасына келеміз.
Анықтама-3. (үзіліссіздіктің “” тіліндегі анықтамасы). Егер кез-келген саны бойынша саны табылып, х-тің теңсіздігін қанағаттандыратын барлық мәндерінде теңсіздігі орындалса, онда f функциясы х0 нүктесінде үзіліссіз деп атлады.
Анықтама-4. (үзіліссіздіктің тізбектер тіліндегі анықтамасы). f функциясы Х аралығында анықталсын. Егер үшін
(n=1,2…), () шарттарын қанағаттандыратын әрбір тізбегіне сәйкес тізбегінің шегі бар және f(x0) санына тең болса, онда f функциясы х0 нүктесінде үзіліссіз деп аталады.
Енді үзіліссіз функциялардың кейбір локальды қасиеттерін келтірейік.
Достарыңызбен бөлісу: |