Решение задач на совместную работу
Пример 1. Две трубы вместе наполняют бассейн за 3 ч. Одна первая труба может наполнить бассейна на 8 ч быстрее, чем одна вторая труба. За сколько часов может наполнить бассейн одна первая труба?
Решение. Типовая задача на работу. Пусть 1-я труба наполняет бассейн за х(ч), а 2-я за – у(ч). Тогда + – объем, наполняемый обеими трубами вместе за 1ч. Так как две трубы наполняют бассейн за 3 ч, то за 1ч они наполнят объема бассейна. Уравнение + = ; по условию у – х = 8. Из системы х = 4; у = 12.
Ответ. 4ч.
Замечание. Чтобы вместо дробно – рациональных уравнений получить линейные за неизвестную величину иногда рациональнее принять производительность.
Пример 2. Бассейн наполняется четырьмя трубами за 4 часа. Первая, вторая и четвертая заполняют за 6 часов. Вторая, третья и четвертая – за 5 часов. За сколько часов заполняют бассейн первая и третья трубы?
Решение. Пусть x, y, z, u – производительности 1-й, 2-й, 3-й и 4-й труб.(Если за неизвестное принять время выполнения всего объема работы, то уравнения получатся сложнее). Тогда получаем систему уравнений
Вычитая из 1-го уравнения 2-е, получаем z = ; из 1-го 3-е, что – х = .
Общая производительность 1 и 3 труб z + x = .
Тогда искомое время = 7,5 ч
Ответ: 7.5 ч.
Пример 3. Две трубы, работая совместно, наполняют бассейн за 6 часов. За какое время наполняет бассейн каждая труба, если известно, что в течение часа из первой трубы вытекает па 50% больше воды, чем из второй?
Решение. Пусть х л воды в час вытекает из первой трубы (производительность 1трубы), у л воды в час вытекает из второй трубы (производительность 2трубы), тогда за 1 час обе трубы наполнят (х + у) л или бассейна.
В течение часа из первой трубы вытекает на 50% больше воды, чем из второй, то есть х = 1,5у.
Тогда .
Таким образом, за 1 час первая труба наполняет бассейна, а вторая бассейна. То есть первая труба наполнит весь бассейн за 10 часов, а вторая - за 15 часов.
Ответ: 10 ч, 15 ч.
Пример 4. Три насоса, качающие воду для поливки, начали работать одновременно. Первый и третий насосы закончили работу одновременно, а второй - через 2 ч после начала работы. В результате первый насос выкачал 9 м3 воды, а второй и третий вместе 28 м3. Какое количество воды выкачивает за час каждый насос, если известно, что третий насос за час выкачивает на 3 м3 больше, чем первый, и что три насоса, работая вместе, выкачивают за час 14 м3?
Решение.
Составим следующую таблицу.
Достарыңызбен бөлісу: |