Эйнштейн Альберт, нем. Albert Einstein (14 наурыз 1879, Германия, Ульм қаласы – 18 сәуір 1955, АҚШ, Нью-Джерси штаты, Принстон) –физик-теоретик, қазіргі физиканың негізін салушылардың бірі.
Альберт Эйнштейн — теориялық физиканың негіз қалаушылардың бірі, 1921 жылғы Нобель сыйлығының иегері, атақты ойшыл және қоғам қайраткері, әлемнің алдыңғы қатарлы 20-ға жуық университеттерінің құрметті профессоры, КСРО Ғылым Академиясының шетелдік құрметті мүшесі.
Эйнштейннің басты еңбегі — ”Салыстырмалылық теориясы”. Бұдан бөлек 300-ден астам ғылыми еңбектердің, тарих, ғылымдар философиясы және публицистика саласындағы 150-дей кітап, мақалалардың авторы ретінде де танымал. Ол бiрнеше түбегейлi физикалық теорияларды жасады:
Арнайы салыстырмалылық теориясы (1905).
Жылу сыйымдылығының және фотоэффект кванттық теориясы
Бозе Эйнштейн кванттық статистикасы.
Броун қозғалысының статистикалық теориясы, флуктуациялардың теориясына негiзін салған.
1921 жылы ғалым Нобель сыйлығына ие болады. Гитлер билік басына келгеннен кейін, 1933 жылы Германиядан біржола кетіп, АҚШ-қа көшеді. Екінші дүниежүзілік соғыс аяқталған соң, Эйнштейн бейбітшілікті көп насихаттауға бет бұрып, өмірінің соңын осы АҚШ-та өткізіп, сол жерде дүние салады.
2. ХХ ғасырдың ортасында кванттық механикаға үлес қосқан ғалымдар
Микробөлшектердің толқындық қасиеттері туннельдік эффект кезінде айқын байқалады. Бұл эффектіні түсіндіру арқылы классикалық физикада түсінік таппаған көптеген құбылыстардың (автоэлектрондық эмиссия, атом ядросының -ыдырауы, т.б.) сыры ашылды.Осы қайшылықтарды шешу кванттық механиканың физикалық негіздерін жасауға мүмкіндік берді. Микродүниенің басқа да құбылыстарын зерттеу кезінде, әсіресе, атом құрылысын зерттеу кезінде, атом ішіндегі электрон қозғалысының классикалық физика заңдарына бағынбайтындығы және олардың энергияларының мүмкін болатын мәндері үздіксіз өзгермей, тек энергия деңгейлерінің дискретті қатарын құрайтындығы анықталды. Оң зарядты нүктелік ядро туғызатын өрісте қозғалатын электронға классикалық механиканың теңдеулерін қолдануға болмайды, яғни механика мен электрдинамика заңдарына негізделген Э. Резерфорд пен Н. Бор жасаған атом моделі орнықсыз болуға тиіс. Бірақ тәжірибе жүзінде атомның орнықты жүйе екендігі дәлелденді. Атомдарда стационар күйлер мен энергия деңгейлерінің бар екендігі Франк-Герц тәжірибесінде (1913–14) дәлелденді. Тәжірибеде байқалған атомдық құбылыстарды үйлестіру мақсатында Бор 1913 жылы екі қағида (постулат) (қараңыз Бор қағидалары) және оларға қосымша сәйкестік принципін ұсынды. Бұл принцип бойынша шектік жағдайда (кванттық сандардың үлкен мәндерінде) теориялық жолмен алынған формулалар классикалық физиканың заңдарына айналады. Бор квант тұрақтысы h-ты пайдалана отырып, заңдары классикалық механика заңдарынан өзгеше, сутек және сутек типтес атомдағы электрондардың қозғалысын анықтады. Сонымен қатар Бор теориясының жетістіктерімен бірге кемшіліктері де байқалды. Бұл теория электрондардың күрделі атомдардағы қозғалысын, атомдардың бір-бірімен байланысып молекулалар түзетіндігін, т.б. түсіндіре алмады. Атом теориясының одан әрі дамуына классикалық теорияның ұғымдары (траектория, орбита, т.б.) кедергі болды. Сондықтан электрондардың атомдағы қозғалысын толық сипаттау үшін атомның алғашқы және кейінгі стационар күйлеріне тәуелді шамалар ғана енетін жаңа теория жасау қажет болды. Осындай теорияны 1925 жылынеміс физигі В. Гейзенберг электронның координаттары мен жылдамдығының орнына абстрактылы алгебралық шамалар – матрицалар ғана енетін матрицалық механика жасау арқылы жүзеге асырды. Гейзенбергтің бұл жұмысын М. Борн мен П. Иордан одан әрі қарай дамытты. М. Борн 1926 жылы де Бройль толқынын ықтималдық теория тұрғысынан түсіндіру арқылы Гейзенбергтің матрицалық механикасы мен Э. Шредингердің толқындық механикасының эквиваленті екендігін дәлелдеді. Шредингер теңдеуі салыстырмалық теориясының талабын қанағаттандырмайды, ол жарық жылдамдығынан әлдеқайда төмен жылдамдықпен қозғалатын жүйенің күйін сипаттайды. Релятивистік тұрғыдан жалпыланған теңдеуді (қ. Дирак теңдеуі) 1928 жылы П. Дирак ұсынды. Дирак теңдеуі электронның спинінің (меншікті импульс моменті) болу себебін түсіндірді. Сонымен қатар Дирак теңдеуінен, массасы электронның массасына тең, оң бөлшектердің болатындығы анықталды. Электронның антибөлшегі “позитрон” деп аталды. Кейінірек табиғаттағы бөлшектердің көбінің антибөлшектері болатындығы айқындалды. Микробөлшектер классикалық статистикадан өзгеше кванттық статистикаға бағынады. Кванттық бөлшектердің статистикасы Ферми–Дирак статистикасы және Бозе–Эйнштейн статистикасы болып екіге ажыратылады. Спиндері жартылай бүтін бөлшектер (электрондар, протондар, нейтрондар, -мезондар, т.б. – “фермиондар”) Ферми–Дирак статистикасының заңдарына бағынады. Кванттық статистиканың басты ерекшелігі – фермиондардың Паули принципіне бағынатындығы. Бұл принцип бойынша кванттық сандары бірдей екі фермион бір мезетте, бір күйде бола алмайды. Спиндері бүтін санға тең бөлшектер (фотондар, -мезондар, т.б. – “бозондар”) Бозе–Эйнштейн статистикасына бағынады. Бозондар Паули принципіне бағынбайды, яғни кез келген күйде бір мезгілде қанша бөлшек болса да орналаса береді. Көп электронды күрделі атомдар үшін, кванттық механика есептерінің күрделілігі сонша, Шредингер теңдеуінің аналитикалық дәл шешімі табылмайды. Әр түрлі тәсілдердің көмегімен оның тек жуық шешімдері ғана алынады. Атомның энергия деңгейлері әр түрлі физикалық шамалармен сипатталатын төрт кванттық сандармен (қараңыз Кванттық сандар) анықталады. Электрондар Паули принципін сақтай отырып, әр энергия деңгейінде тек бір-бірден ғана орналасады. Атомның электрондық қабығының осылайша түзілуі химиялық элементтердің периодтық жүйесіндегі орналасу тәртібін түсіндіруге мүмкіндік береді. Кванттық механика – табиғаттың бұл заңдылығын алғаш түсіндірген бірден бір теория. Жылулық сәуле Бозе – Эйнштейн статистикасына бағынатын фотондардан тұратын жүйе ретінде қарастырылады. Мұндай тәсілді пайдаланып жылулық сәуленің спектрі бойынша энергияның таралу (үлестірілу) заңын анықтауға болады. Кванттық механика заңдары классикалық механиканың заңдарынан өзгеше болғанымен классикалық физиканың заңдарын жоққа шығармайды, оларды толықтырады. Кванттық механиканың кеңінен қолданыс тапқан бір саласы – соқтығысу теориясы. Әр түрлі соқтығысу және шашырау құбылыстарын зерттеуге кванттық механиканы пайдаланып, бөлшектердің бір-бірімен әсерлесу кезіндегі эффективтік қимасын есептеп шығаруға болады. Кванттық механика атомдармен қатар молекулалардың қасиетіндегі ерекшеліктерді, валенттілік теориясы мен химиялық күштердің табиғатын, қатты денелермен сұйықтықтардың көптеген қасиеттерін: асқын өткізгіштік пен ферромагнетизмді және асқын аққыштықты, т.б. толығымен түсіндірді. Кванттық механиканы релятивистік тұрғыдан жалпылау нәтижесінде сәуле шығарудың және әлі де болса қалыптасып бітпеген өрістің кванттық теориясы пайда болды. Кванттық механика физиканың көптеген саласында кеңінен пайдаланылып, елеулі нәтижелер беруде. Ол ядролық энергетиканың, радиоэлектрониканың, т.б-дың негізі болып саналады. Қазіргі кезде кванттық механика – физикалық негіздері түсінікті, математикалық аппараты жетілген, іргелі физикалық проблемаларды толық шешуге мүмкіндігі бар, дәйекті де жүйелі теория қатарына жатады.