Лекции №1 Матрицы и определители Содержание темы лекции Понятие матрицы. Виды матриц. Линейные операции над матрицами


Теорема 3. У любой невырожденной матрицы обратная матрица единственная. Доказательство



бет5/6
Дата19.09.2023
өлшемі215,78 Kb.
#108587
түріЛекции
1   2   3   4   5   6
Байланысты:
file-3187

Теорема 3. У любой невырожденной матрицы обратная матрица единственная.
Доказательство.(от противного). Предположим, что матрица имеет две обратных матрицы и . Тогда имеют место равенства:
и (2.6)
Отсюда
,
т.е. , ч.т.д.
Определение. Квадратная матрица называется ортогональной, если выполняется равенство: . Очевидно, что ортогональной может быть только невырожденная матрица.
Пример 2. Матрица



ортогональна, так как
= .


Теорема 4. Для того, чтобы квадратная матрица была ортогональной, необходимо и достаточно , чтобы:
1) был равен либо +1, либо -1;
2) каждый её элемент был бы равен своему алгебраическому дополнению, если , и своему алгебраическому дополнению, взятому с противоположным знаком, если .
Выделим в матрице размерности строк и столбцов, где .Элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу порядка . Определитель этой матрицы называется минором го порядка матрицы .
Определение. Рангом матрицы называется наибольший из порядков миноров данной матрицы, отличных от нуля.Обозначается , или . Если ранг матрицы равен , то это означает, что у матрицы есть минор порядка , отличный от нуля, и все миноры порядка, большего чем , равны нулю. В этом случае минор порядка, отличный от нуля, называют базисным минором. Строки и столбцы, на пересечении которых расположен базисный минор, называются соответственно базисными строками и базисными столбцами.
Теорема 5.(о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы является линейной комбинацией базисных строк (столбцов).
Определение. Каждую строку матрицы назовём вектором-строкой, а каждый столбец назовём вектором-столбцом. Отсюда следует, что матрице размерности соответствует система векторов-строк и векторов-столбцов. Тогда из теоремы о базисном миноре вытекает важное следствие.
Следствие. Максимальное число линейно независимых строк матрицы равно максимальному числу её линейно независимых столбцов и равно рангу матрицы .
Отсюда следует, что ранг матрицы при транспонировании не меняется.
На следствие теоремы о базисном миноре опирается один из способов вычисления ранга матрицы, который называется методом Гаусса.
Определение. Элементарными преобразованиями матрицы называются следующие действия:

  1. вычёркивание нулевой строки (столбца);

  2. перестановка местами двух строк (столбцов);

  3. прибавление к одной из строк другой строки, умноженной на любое число .



Достарыңызбен бөлісу:
1   2   3   4   5   6




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет