Матричный метод решения СЛУ
Рассмотрим систему, состоящую из n линейных уравнений с n неизвестными:
Вводя матрицу коэффициентов перед неизвестными А, матрицу-столбец неизвестных Х и матрицу-столбец свободных членов В, систему можно переписать в матричной форме:
Предположим, что матрица А - неособенная, т.е. А ≠ 0. Решим матричное уравнение, а следовательно и систему (4) с помощью обратной матрицы А,
где, А = * Ặ =>
X = * Ặ =>
Для системы трех уравнений с тремя неизвестными:
решение запишется в виде:
«Ранг матрицы. Метод Гаусса. Система m уравнений с n неизвестными».
Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А.
Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим.
Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A).
Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.
Элементарными называются следующие преобразования матрицы:
1) перестановка двух любых строк (или столбцов),
2) умножение строки (или столбца) на отличное от нуля число,
3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.
Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.
Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A B.
Достарыңызбен бөлісу: |