Отчет по учебной практике


Качественное объяснение эффекта



бет2/9
Дата13.04.2023
өлшемі0,59 Mb.
#82473
түріОтчет
1   2   3   4   5   6   7   8   9
1.1 Качественное объяснение эффекта
Качественно понять это явление можно, если рассмотреть траектории положительно заряженных частиц (например, дырок) в магнитном поле. Пусть через образец проходит ток j вдоль оси X. Частицы обладают тепловой скоростью или если дырочный газ вырожден, то средняя скорость частиц равна фермиевской скорости (скорости частиц на уровне Ферми), которые должны быть много больше скорости их направленного движения (дрейфа). Без магнитного поля носители заряда движутся прямолинейно между двумя столкновениями.
Во внешнем магнитном поле B (перпендикулярного току) траектория будет представлять собой в неограниченном образце участок циклоиды длиной l (длина свободного пробега), и за время свободного пробега (время между двумя столкновениями) вдоль поля E частица пройдет путь меньший, чем l, а именно

Поскольку за время свободного пробега τ частица проходит меньший путь вдоль поля E, то это равносильно уменьшению дрейфовой скорости, или подвижности, а тем самым и проводимости дырочного газа, то есть сопротивление должно возрастать. Разницу между сопротивлением при конечном магнитном поле и сопротивлением в отсутствие магнитного поля принято называть магнетосопротивлением.
Также удобно рассматривать не изменение полного сопротивления, а локальную характеристику проводника — удельное сопротивление в магнитном поле ρ(B) и без магнитного поля ρ (0). При учете статистического разброса времен (и длин) свободного пробега, получим

где μ — подвижность заряженных частиц, а магнитное поле предполагается малым . Это приводит к положительному магнетосопротивлению. В трёхмерных ограниченных образцах на боковых гранях возникает разность потенциалов, благодаря эффекту Холла в результате чего носители заряда движутся прямолинейно, поэтому магнетосопротивление с этой точки зрения должно отсутствовать. На самом деле оно имеет место и в этом случае, поскольку холлово поле компенсирует действие магнитного поля лишь в среднем, как если бы все носители заряда двигались с одной и той же (дрейфовой) скоростью. Однако скорости электронов могут быть различны, поэтому на частицы, движущиеся со скоростями, большими средней скорости, сильнее действует магнитное поле, чем холлово. Наоборот, более медленные частицы отклоняются под действием превалирующего холлова поля. В результате разброса частиц по скоростям уменьшается вклад в проводимость быстрых и медленных носителей заряда, что приводит к увеличению сопротивления, но в значительно меньшей степени, чем в неограниченном образце.


1.2 Тензор проводимости
Выражение (2.11) существенно упрощается если рассматривать двумерный дырочный газ (в плоскости XY) помещённый в поперечное магнитное поле. То есть магнитное поле направлено по оси Z

и магнитное поле и электрическое ортогональны между собой

Тогда выражение (2.11) записанное в матричной форме примет вид


где тензор σ называют тензором проводимости двумерного дырочного газа в магнитном поле.
Если рассмотреть достаточно длинный образец прямоугольной формы, такой, что линии тока вдали от контактов параллельны боковым сторонам образца, то в этой системе отсутствует ток jy. Можно записать связь между компонентами электрического поля (Ey называют холловским полем)

которая приводит к выражению для тока jx

не зависящему от магнитного поля, то есть к отсутствию магнетосопротивления.
Обратная матрица к матрице проводимости называется тензором сопротивлений

и в общем случае для обращения нужно использовать формулы


где вместо компонент тензора проводимости следует использовать компоненты в уравнении (3.3).
Для двумерного электронного газа используются формулы (3.3), где изменён знак на противоположный перед подвижностью в тензоре проводимости (или просто транспонированная матрица проводимости).




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет