●
Технические науки
100
№2 2016 Вестник КазНИТУ
вая руда с содержанием меди 0,33% . Забалансовая руда и окисленные убогие руды находится в отва-
лах рудника. Можно увидеть расположения отвалов, выщелачиваемых методом SX-EW и отвалов,
проектируемых к выщелачиванию. Месторождение находится в области межгорья Хангайской и
Хэнтэйской горных систем с абсолютными отметками 1200-1700 метров. Горные хребты простира-
ются в северо-западном направлении и разделены обширными долинами с постоянными, периодиче-
ски действующими водотоками. Климат района резко-континентальный с холодной зимой, коротким
летом, резкой амплитудой температуры воздуха в течение суток и года. Средняя температура самого
теплого месяца июль + 18°С. Самого холодного месяца в январе ~ 25°С. Самая холодная температура
зимой опускается до -35°С. Годовое количество осадков не превышает 285 мм. В районе где находит-
ся месторождение наблюдается вечная мерзлота, которая встречается в виде островов . Вечная мерз-
лота, главным образом, встречается на северном склоне гор. Глубина сезонного промерзания равна
2,4 - 4,3 метров.
Сырьевая база: Месторождение Эрдэнэтиин овоо представляет собой крупный медно-
порфировый штокверк. Сверху вниз последовательно выделяются зоны выщелачивания и окисления,
вторичного сульфидного обогащения и первичные руды. Зона выщелачивания и окисления просле-
живается на глубину 10-90 метров и в среднем составляет 36 метров. В зонах интенсивных тектони-
ческих нарушений и в зонах пересечения даек окисленная зона доходит до 150 метров. Мощность
зоны вторичного сульфидного обогащения варьируется от нескольких десятков метров на флангах до
300 метров в центральной части. Зоны первичной руды, как обычно, находятся ниже зоны вторично-
го сульфидного обогащения. Степень окисления руд в целом по месторождению составляет в сред-
нем около 8 % по меди. Содержание меди по месторождению 0,5 - 1,0 % . Рудные минералы пред-
ставлены халькозином, ковеллином, борнитом, пиритом, халькопиритом, молибденитом. Окисленные
минералы представлены азуритом, малахитом, самородной медью, халькантитом и другими формами
окисленной меди. Руды вторичного обогащения и первичные руды поступают на обогатительную
фабрику для обогащения с применением традиционной технологии, и окисленная руда поступает в
отвалы, где будет выщелачиваться методом SX-EW.
Особенности отвалообразования для выщелачивания руды методом SX-EW:
На месторождении Эрдэнэтиин овоо при добыче руды для выщелачивания отдельно складиро-
вались окисленные и смешанные руды. Кроме окисленной руды в отвалы для выщелачивания ввози-
лись убогие руды с содержанием 0, 33% .С целью определения окисленной формы меди на руднике,
буровзрывные скважины опробовались. После получения анализов выделялись участки сульфидной
руды и окисленной руды. После взрывных работ отбитая руда, которая по окисленности меди выше
10 %, специально вывозились на отвалы где будут выщелачиваться, а ниже по окисленности 10% по-
ступают в обогатительную фабрику для обогащения по традиционной технологии.
Медные производители в Казахстане серную кислоту в основном выбрасывают в воздух, тем
самым, загрязняя атмосферу. Сегодня мировое сообщество не разрешает выброс в атмосферу серной
кислоты. Казахстанских производителей меди также заставляют утилизировать серную кислоту. На
заводах, где происходит выброс серной кислоты, дано поручение утилизировать серную кислоту в
полном объеме. Технология выщелачивания медных месторождений методом SX-EW является эко-
логически чистым производством. Процесс происходит в замкнутом режиме. Использованная серная
кислота после применения экстракции и электролиза подается обратно в отвал для орошения.
ЛИТЕРАТУРА
[1] Бровкин К.Г., Тен В.В., Особенности подготовки месторождений к разработке способом кучного
выщелачивания. Разведка недр №10, 1991. С.2-5.
[2] Мейерович А.С., Ниресев А.В. Современная практика извлечения благородных металлов из забалан-
совых руд и отвальных продуктов за рубежом. М, 1989.-45 с.
[3] Снурников А.П. Комплексное использование минеральных ресурсов в цветной металлургии. М, Ме-
таллургия, 1986.- 371 с.
[4] Бахуров В.Г., Руднева И.К. Химическая добыча полезных ископаемых. М, Недра, 1072.
[5] Патент США. № 4427236, кл 299-5, 1984.
[6] Жараспаев М., Крупник Л.А. и др. Способ определения удельного расхода жидкости для обработки
рудной массы. Патент РК № 4310. 14.03.97. Бюл.№1.
[7] Бахмагамбетова Г.Б. Способ выщелачивания забалансовых руд в местах их складирования. Вестник
КРСУ. Том 12, №7, 2012. с.28-30.
●
Техникалық ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
101
REFERENCES
[1] Brovkin K.G., Ten V. V., Features of fields preparation for development in the way of heap leaching.
Investigation of subsoil No. 10, 1991. Page 2-5.
[2] Meyerovich A.S., Niresev A.V. Modern practice of precious metals extraction from off-balance ores and dump
products abroad. M, 1989.-45 pages.
[3] Snurnikov A.P. Complex use of mineral resources in nonferrous metallurgy. M, Metallurgy, 1986. - 371 pages.
[4] Bakhurov V. G., Rudneva I.K. Chemical mining. M, Nedra, 1072.
[5] Patent of the USA. No. 4427236, C 299-5, 1984.
[6] Zharaspayev M., Krupnik L.A., etc. A way of definition of a specific consumption of liquid for ore mass
processing. Patent RK No. 4310. 14.03.97. Бюл.№1.
[7] Bakhmagambetova G. B. Way of leaching of off-balance ores in places of their warehousing. KRSU bulletin.
Volume 12, No. 7, 2012. page 28-30.
Еркен М., Жараспаев М., Бахмагамбетов Б., Бахмагамбетова Г.Б.
Тау-кен металлургия кешендерінің қалдықтарын ұйынды сілтілеу әдістерінің болашағы
Түйіндеме. Мақалада мысты металлургиялық жолмен өндірудегі сілтілеудің SX-EW жаңа әдістері қарас-
тырылған. Қазіргі уақытта мыс өндірушілер осы тәсілге қарқынды түрде өтіп жатыр. Қазақстанда кен орында-
рының төмен құрамды кенорындарын және оның қалдықтарын өңдеуді қосымша пайдалы компоненнтер алуға
мүмкіндік беретін SX-EW әдісімен алу өзекті мәселелердің бірі.
Негізгі сөздер: үймелі сілтілеу, мыс, үйінді, өзіндік құны, кен орыны
Erken M., Zharaspayev M., Bakhmagambetov B., Bakhmagambetova G. B.
Heap leaching perspective method of mining and metallurgical complex's waste
Summary. The advanced know-how in copper productivity with is SX-EW drillhole leaching is researched in
the article. At present the main copper producers rapidly transfer to this technology. In Kazakhstan appears the wastes
and low contentration oxigen ores processing problem by SX-EW method which allows to produce additional commer-
cial components.
Key words: heap leaching, copper, spoil dump, producing costs, field
УДК 004.6
A. Ahsutova, G. Sarsenbaeva
(K.I. Satpayev Kazakh national research technical university
Almaty, Republic of Kazakhstan, Ahsutova_a@mail.ru)
THE USE OF OBJECT DBMS FOR MULTIMEDIA APPLICATIONS
Abstract. As the title implies the article describes the functions required object database management systems
for managing multimedia information. The article discusses the differences between the object database management
system assumes a very simple management capabilities of multimedia data repositories, and the next generation, de-
signed to support complex multi-user interactive media; we will call them multimedia database management system.
Key words: the multimedia, the engineering design, the database, the graphical data.
Conventional DBMS of general purpose commonly used for simple data types such as integers and
strings. Hatched object database management system DBMS (ODBMS), implemented on the basis of objec-
tive –oriented models offer more advanced tools for managing complex data.
Support for multimedia data requires changes not only in the ODBMS, but in the operating system,
network and hardware. Although this article focuses on the software, we also talk about the requirements for
other system components.
Multimedia Data Types
In order to understand the requirements to be met by ODBMS, you must have an idea of the types of
multimedia data. Let’s list the most common ones.
Text. The large volume of structured text in the form of books contains parts, chapters, sections, sub-
sections and paragraphs.
Graphics. Drawings, paintings and illustrations encoded using high-level descriptions, such as CGM,
Pict and PostScript. This type of data can be stored in the database in a structured way and to make inquiries
as to the contents of the database metadata (they can be a line, circle, and arc). Naturally, it has become more
●
Технические науки
102
№2 2016 Вестник КазНИТУ
difficult the search for more complex objects, which is a composition of simple data types (such as a chair,
painted with arcs and circles).
Image. This photos and pictures encoded using standard formats, including raster (Bitmap), JPEG and
MPEG. Saving an image transformed by live broadcast (in pixels), so it is impossible to operate with con-
cepts such as arcs, circles and segments. Some formats (eg. JPEG and MPEG) provide additional sealing of
such a representation, which allows reducing the volume of the resulting data. These images cannot be de-
scribed using the basic components (eg. Lines), so the search of complicated objects is difficult.
Animation. The sequence of images or graphic data, that defines the order of rendering images in time.
The original images or graphics are constructed and arranged separately. Unlike the simple images that can
be downloaded and observe, not looking at the time frame, the animation is quite imposes certain re-
strictions. Each image or graphic must be reproduced sequentially in a chronological order, replacing each
other. In different animation sequencethis restriction may vary (in one case displayed, for example, two, and
another - of 30 images per second).
Video. The sequence ordered in time snapshots. These data are recorded real event obtained using a
special device. In most cases, the video played back at a speed of 24 to 30 frames / sec. Time constraints are
usually determined by the frame rate, optimal for viewing.
Structured audio. As with animation, these data represent a sequence of independent components with
specific timing characteristics and limitations. Each component is described by a number of parameters, such
as the note pitch and duration of sounds. Time limits are subject to change at listening and are usually deter-
mined at the stage of creation. Moreover, they are often inherent in the method of description of the compo-
nent (eg, presence of eight shares).
Audio. The audio data - Time-ordered sequence of data generated during recording. The basic unit of
audio data are called samples. Sound information is temporary restrictions defined sampling rate, which is
necessary for its optimal performance.
Composite types. Compound multimedia data is created by combining the base types, as well as other
components of the multimedia data. Such a composition can be physically (with the formation of a new type
of data) or logical. The result of the physical composition will transition to a new format of information stor-
age in which various types of data (e.g., audio and video) are mixed. In the case of compositions also logical
to define new types of data, but the basic types and formats for storing remain unchanged. Thus, a new type
of audio and video (AV) may consist of two separate parts. Meanwhile, methods of reproduction must dis-
play the data synchronization, as if they were a single entity. The composite data may also contain additional
control information which describes the characteristics of the display on the client machine.
Presentation. Complex composite objects containing inter alia scenario description, according to
which modifies and displays the data. Such a scenario could be as simple as ordering in time (to play video
1, then 2, etc.), or represent something more complex, such as to determine how the user interaction, systems
and applications affect the representation of the resulting information.
Types of Applications
Database managing multimedia data have different fields of application. So, what features should be
maintained ODBMS defined application requirements. For some applications it is suitable for existing
ODBMS. For others, none of the known ODBMS not do.
Information Repositories
Repositories provide support for simple management database, such as the protection and backup.
They should not recognize the format of stored data, as they are not engaged in processing. Repositories can
support the transaction, but the updates are performed to replace the entire object. Since the data is stored as
binary large object (Blob, they are one and indivisible entity. To formulate queries useful metadata and other
information repository, but in general queries parameters of the data media are not specified. In addition, the
repository does not know any what about the time constraints inherent in such data as video. The information
simply passed on to the application. Here are some examples of applications that use the repository.
Pseudo repository. It contains only the metadata of multimedia, in particular the names, extent, codes,
descriptions and keywords movies. Stored in the database values substitute describe the path to multimedia
objects - just a file on the local or network file system. Object database has limited file management, as they
are outside of the repository.
Simple repository. Usually it offers some functions to access data and serves as a central repository
from which is convenient archive data. The matter is that there are applications requiring centralized data
●
Техникалық ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
103
storage media. DBMS manages data located on local disks or other devices. Applications can read the data
media, locally and use it to return to the database for storage.
Email. E-mail systems provide for the transfer of multimedia data and use the repository for storage,
search and retrieval. In any case, as a server repository, simply transferring it to the requesting email client.
To read a mail client must have an application that recognizes the format of multimedia data.
Drawings and computer-aided design data. For security reasons or for the purpose of configuration
management technical drawings and solid models it is advisable to store in the repository. Any operation (for
example, modification) performed by the client software, able to work with that data.
Medical information systems. The repository is convenient to store data about patients, such as x-rays
and medical records.
Intelligent data management
Since ODBMS "understand" the data stored in it, it allows you to not just work with metadata, and ac-
cess the contents of the multimedia objects. Here we discuss some of the types of applications that use
ODBMS for intelligent information management.
Working environment. Traditional database management systems provide the basic tools for creating
and updating the standard data types, and query processing. With appropriate extensions they can provide
similar support for multimedia data types. Here are some examples:
Editing multimedia. Since ODBMS "understand" data formats, users are allowed to request to update
individual fragments of a video sequence. ODBMS specific support for certain data editing operations, in-
cluding cut, paste and cut-off.
Workflow automation systems engineering design. During the development of technical products are
quite complex drawings. You must have mechanisms for validating, monitoring changes you make, no mat-
ter where and when they were made. Admissibility of changes is checked by comparison with other parts of
the project or with the stipulated limits, after which the information shall be transmitted to engineers and re-
lated system components. These changes can affect and to the accompanying documents, leading to the gen-
eration of new charts to be included in the different sections of the project and working documentation.
Intelligent networks in health care. Such systems allow doctors to cooperate with each other, giving
them the communication infrastructure for interactive joint discussion of medical data and patient infor-
mation. Furthermore, they may be supported routing. This means retaining information is analyzed and de-
pending on the results of the analysis is sent directly to the proper.
Presentation environment. ODBMS convenient to represent rigidly tied to the timeline of multimedia
data such as audio and video. In these applications, unlike, for example, e-mail, the data is used immediately
after their delivery. ODBMS well adapted to work with data of this kind. Here are some examples of presen-
tation environments.
Simple viewing of multimedia. Users make a selection of relevant media and tell the system that they
want to see them. As reading data from a storage device, they immediately (frame by frame) devoted users.
He may provide an interface similar to the control panel of the VCR, that enables you to stop the playback
and select the movies, to perform in front of a fast rewind, play the video backwards or jump to an arbitrary
recording sites. Delivered data thus meet the time constraints that are essential for full functionality.
Sophisticated multimedia presentations. Users get to see the combined multimedia data that are deliv-
ered to them in the database object frame by frame (or sample). Instructions for playing stored as metadata
with the multimedia information and define the order of each component of the sample (serial or parallel).
Interactive multimedia environment. These environments allow you to implement complex interac-
tions with the database, including real-time editing, analysis, or annotate video / audio system and multi-
collective presentation (user-driven, application or system), as well as advanced tools for querying.
Thus, the multimedia database may be used for the following operations:
Reading. Selection / viewing (or listening to) data and multimedia presentations.
Updates. It includes a creation of new multimedia data and modification of existing ones.
Combining. Create compositions and presentations with basic multimedia data.
Queries. Search in a multimedia database, it is possible to request the metadata of multimedia or di-
rectly to the data itself.
Interaction. It includes user interaction and ODBMS data media. Due to this interaction with the ap-
plications and systems that support user interaction (and a multiplayer mode) data are converted from static
to dynamic. In addition, they can be connected or have an impact on other information (for a typical tech-
●
Технические науки
104
№2 2016 Вестник КазНИТУ
nical project). When creating a song (combined data), the user determines their behavior using a special tool
or language (having similar capacities).
Meanwhile, the characteristics which must be taken into account when selecting a multimedia data-
base, depending on the particular application and its requirements. As seen from the above examples,
ODBMS can be applied in very different ways. Undoubtedly, many of the existing ODBMS quite capable to
fulfill the role of pseudo repositories or simple repositories for storing multimedia data.
Requirements for functionality ODBMS
So, what is behind the support for multimedia data by means of ODBMS? What features are required
to use such data (they read, update, query, combine and interact with them)?
Below is a list of characteristics of multimedia data. Next we will consider them more closely and tell
you which tools should provide ODBMS if they would act as a multimedia database management systems.
Data Types. ODBMS can interpret the information media as a binary large objects, performing the
role of a simple repositories, are not recognized or do not support the data formats of multimedia. On the
other hand, some ODBMS initially provide support for multiple types of multimedia data. In object-oriented
software, these data types are present in a particular class. Several of these methods include the class defini-
tions, providing the operation with the appropriate data type.
The size of the data. The multimedia data can have extremely large volume. The two-hour film, even
in compacted form takes 4 to 5 GB. This alone can significantly affect the architecture of hardware and
software. View. In general, the media object to view it is necessary to extract and visualize on the screen (or
play through the speakers). For audio and video data, this process requires an appropriate bandwidth (a few
such systems), otherwise would not be met predetermined time limit. In many configurations, it is impossible
to meet such demands. In this case, users can specify the level of quality of service (QoS), appropriate to
their current needs. Meanwhile, the environment is not always meets QoS (i.e., not at any point in time), and
then either the user is encouraged to consult this information later time or reduce the QoS.
Query. Queries are used in any database. That they can be applied to the data media, they need to in-
terpret. This process requires complex indexing schemes, implementation of algorithms for image analysis
and sound to generate a description of the contents of the database. Users can request 'image similar to this ",
or indicate to the request specification of some action (e.g., performance). Thus, the support mechanisms for
the generation of queries required indices, interfaces and languages for their formulation, as well as compo-
nents for their optimization.
Bandwidth. In accordance with the playback audio and video data is necessary to optimize hardware
and software, to meet the time limit. The main problem here is the capacity of the system.
Resource Planning. The user can request the simultaneous delivery of a plurality of disc with audio
streams. Furthermore, several users sometimes simultaneously read various data from the same disk. Finally,
we should plan the work of playback devices and recording media for conflict prevention.
Memory, bus-line, processor.
To handle multimedia data, for example to carry out such operations as turning high-quality image, the
computer must have enough memory to allow the entire image to load. The use of buffering, processor
speeds increase and the data bus can significantly improve the system capacity.
Special chipsets and cardboards. Due to the high bandwidth requirements imposed on audio and video
manufacturers create specialized chipsets and cardboards to capture, view, convert compression and unzip-
ping of data, as well as for multimedia operations such as cropping and rotating the image. In addition, some
companies have established with specialized CP instruction set for multimedia processing. These solutions
increase the system capacity and provide additional functionality. This hardware performs these operations
faster than similar software components, but they are less flexible and more expensive.
Storage devices. Due to the large amount of data on the hard disk are let to enter mass with the highest
speed can be recorded only two or three movies. This means that a repository for storing multimedia data
better form of high-capacity disk array. Because of bandwidth limitations in the transmission of video addi-
tional devices must have sufficient speed to handle multiple requests. Thus, it may take parallel disk subsys-
tem.
4
|