●
Технические науки
360
№2 2016 Вестник КазНИТУ
Stress XY
-0.0950177 MPa
0.114265 MPa
Stress XZ
-0.100812 MPa
0.082226 MPa
Stress YY
-0.17163 MPa
0.175917 MPa
Stress YZ
-0.0905295 MPa
0.0956635 MPa
Stress ZZ
-0.35237 MPa
0.181144 MPa
Displacement by axis X
-0.0000109124 mm
0.000010864 mm
Displacement by axis Y
-0.0000000031431 mm
0.000025615 mm
Displacement by axis Z
-0.0000109044 mm
0.0000109631 mm
Equivalent deformation
0.0000000100472 br
0,0000012113 br
1
st
principal deformation
0.000000000294334 br
0.00000104142 br
3
rd
principal deformation
-0.00000146782 br
-0.000000000488216 br
Deformation XX
-0.00000109912 br
0,000000650242 br
Deformation XY
-0.000000588205 br
0.000000707356 br
Deformation XZ
-0.000000624077 br
0.000000509018 br
Deformation YY
-0.000000703846 br
0.000000465216 br
Deformation YZ
-0.00000056042 br
0.000000592202 br
Deformation ZZ
-0.00000125351 br
0.000000708675 br
Figure 1 shows a modeling of the sleeve. Here we have chosen drafted in Autodesk Inventor Profes-
sional 3D part (fig.1a) and start to simulate it. First, assign the material for the sleeve (fig.1b) and further,
will have the dependence of fixations (fig.1c). After fixing assign force (fig.1d), pressure (fig.1e) and the
time for this part (fig.1f). Click kind of network to make it convenient to see the results of the modeling
(fig.1g). Then we start the calculation of modeling.
a
b
c
d
●
Техникалық ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
361
e
f
g
Figure 1. ЗD modeling of the sleeve
The results of the 3D modeling of sleeve fits over all the properties of forging steels, as well it should
be noted that before this was known steel having damping properties, but does not consider raising the damp-
ing properties by hot forging. Damping properties of the steel St.E3: Q
-1
= 28.05 (internal friction, 10
4
);
Ψ=176.2 (relative dispersion, %), δ=88.094 (logarithmic decrement ).
ЛИТЕРАТУРА
[1] Фавстов Ю.К., Шульга Ю.Н., Рахштадт А.Т. Металловедение высокодемпфирующих сплавов. Под
ред. А.Г.Рахштадта – М. «Металлургия». 1980. С.271 с ил.
[2] Zh.O.Zhumadilova. Монография. Development of damping multiple alloyed Steels. LAPLAMBERT Aca-
demic Publishing. Saarbrucken, Germany. 2011. 138p.
[3] Жумадилова Ж.О., Бабаев Ш.Е., Бестаев А.Ш. Влияние легирующих элементов на характеристики
сталей. Вестник КазНТУ имени К.И.Сатпаева, №3. 2014. С.439.
[4] A.I. Skvortsov. Analysis of inelasticity in high-damping Zn-Al alloys, gray irons, and iron alloys with inter-
nal friction of a magnetomechanical nature. Metal Science and heat treatment, Vol. 54, Nos. 5-6, September, 2012.
pp.249-252.
REFERENCES
[1] Favstov Ju.K., Shul'ga Ju.N., Rahshtadt A.T. Metallovedenie vysokodempfirujushhih splavov. Pod red.
A.G.Rahshtadta – M. «Metallurgija». 1980. S.271 s il.
[2] Zh.O.Zhumadilova. Monografija. Development of damping multiple alloyed Steels. LAPLAMBERT Aca-
demic Publishing. Saarbrucken, Germany. 2011. 138p.
[3] Zhumadilova Zh.O., Babaev Sh.E., Bestaev A.Sh. Vlijanie legirujushhih jelementov na harakteristiki stalej.
Vestnik KazNTU imeni K.I.Satpaeva, №3. 2014. S.439.
[4] A.I. Skvortsov. Analysis of inelasticity in high-damping Zn-Al alloys, gray irons, and iron alloys with inter-
nal friction of a magnetomechanical nature. Metal Science and heat treatment, Vol. 54, Nos. 5-6, September, 2012.
pp.249-252.
●
Технические науки
362
№2 2016 Вестник КазНИТУ
Жұмаділова Ж.О.
Соққылы демпферлік болаттан төлкені 3D моделдеу
Түйіндеме. Жұмыста Autodesk Inventor Professional 2015 бағдарламасы көмегімен соққылы демпферлі
болаттан төлкені 3D моделдеу жүргізілді. Жұмыста бұйымның әрбір компоненті үшін ығысуға, жылдамдығына,
үдеуіне және жүктемесіне талдаулар жүргізілді. Беріктілік және деформациялық есептеулер, эквивалентті жүк-
темелерге талдау жүргізілген, сонымен қатар минимальды және максимальды күшті анықтай отырып, бөлшек
деформациясы және беріктілік қоры анықталған.
Кілт сөздер: демпферлік болат, төлке, төлкені 3D моделдеу, Autodesk Inventor Professional, массалық ты-
ғыздық, аққыштық, созылым беріктілігінің шегі.
Жумадилова Ж.О.
3D моделирование втулки из кованной демпфирующей стали
Резюме. В работе проводили 3D моделирование втулки из кованной демпфирующей стали с помощью
программой Autodesk Inventor Professional 2015. В работе для каждого компонента изделия произвели анализ
перемещений, скоростей, ускорений и нагрузки. Проводили прочностные и деформационные расчеты, прово-
дили анализ эквивалентных напряжений, определяя минимальное и максимальное напряжение, деформацию
детали и запас прочности.
Ключевые слова: демпфирующая сталь, втулка, 3D моделирование втулки, Autodesk Inventor Profes-
sional, массовая плотность, предел текучести, предел прочности растяжения.
УДК 621.548:621.396.946
Ж.Б. Байнатов, Д.Х. Фазылова,
(КазНИТУ имени К.И. Сатпаева, Алматы, Республика Казахстан)
ЭНЕРГОВЫРАБАТЫВАЮЩАЯ УСТАНОВКА И РАСЧЕТ ПО ОПРЕДЕЛЕНИЮ НАГРУЗКИ
НА СТВОЛ ЦИЛИНДРИЧЕСКОЙ БАШНИ С УЧЕТОМ ОТСОСА И КРУЧЕНИЯ
Аннотация. Современная ветроэнергетика переживает период бурного развития. Обострившиеся про-
блемы энергетики требуют разработки методов крупномасштабного производства энергии с помощью альтер-
нативных источников, важнейшим из которых является ветровая энергия. Перспективы использования ветро-
энергетики определяются наличием соответствующих ветроэнергетических ресурсов, Казахстана исключи-
тельно богат ветровыми ресурсами.
Ключевые слова: энергетическая установка, расчет нагрузки, моментная нагрузка.
Мировая практика показывает, что промышленностью освоены и эксплуатируются два типа
ветроагрегатов – с горизонтальной (крыльчатые) и вертикальной (лопастные – карусельные и ортого-
нальные) осью вращения ротора. Причем более 95% мирового рынка ветроэнергетики использует
схему с горизонтальным ротором. Обе схемы обладают рядом известных положительных характери-
стик - они не производят загрязнения воздуха, не требуют воды для охлаждения, не вызывают тепло-
вого загрязнения и не потребляют топлива. Эффективно и целесообразно их применять можно только
там, где ветровой поток имеет стабильные режимы – горизонтальный и постоянный, как по направ-
лению, так и по величине (например, как в аэродинамической установке), а это в среднем от 9 до 18
метров в секунду. В 2010 году суммарные мощности ветряной энергетики выросли во всём мире до
196,6 ГВт. Воздушные потоки могут использоваться для эксплуатации ветряных турбин. Современ-
ные ветряные турбины имеют расчетную мощность от 600 кВт до 5 МВт, хотя самыми используемы-
ми в коммерческих целях стали турбины с мощностью 1.5-3 МВ; Мощность ветряной турбины про-
порциональна кубу скорости ветра, т.е. при увеличении скорости ветра, значительно увеличивается и
выработка энергии. Территории, на которых скорость ветра выше, а наличие ветров более постоянно,
например, прибрежные зоны и высокогорные районы, являются более предпочтительными для стро-
ительства ветропарков. Установка ветряных турбин может требовать обширных земельных участков,
и желательно в районах с высоким потенциалом ветра. С другой стороны, установка турбин в море не
требует отвода земли, и к тому же ветры там в среднем на 90% сильнее. Энергия ветра является воз-
обновляемым источником и не производит парниковых газов (двуокись углерода или метан). Разра-
ботанная установка состоит из двух энерговырабатывающих блоков. Лопасти верхнего блока враща-
●
Техникалық ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
363
ются горизонтально как лопасти вертолета, второй блок размещен в середине башни и его крылчатки
тоже вращаются горизонтально относительно ствола вокруг башни. Горизонтальные лопасти верхно-
го блока имеют небольшое дугообразное очертание в плане, а их ветровая поверхность имеет вогну-
тую форму для эффективного улавливания напора ветра. [1]
Мы делаем расчет по определению нагрузки на дугообразную ( круговую) цилиндрическую
трубу. Круговая цилиндрическая труба высотой l, с наружным радиусом r и внутренним r
0
жестко
защемлена в основании (рис.1.1, а). Материал трубы имеет плотность g, модули его упругости Е и G.
На части боковой поверхности BCB
1
C
1
приложена равномерно распределенная нагрузка q, направ-
ленная в каждой точке по нормали к поверхности. Задано = 10. Необходимо построить линейную
модель.
Поперечное сечение представляет собой кольцо. Любая ось, проведенная через его центр, будет
осью симметрии, поэтому центр тяжести и центр и изгиба совпадают с центром кольца. Две ортого-
нальные оси, проходящие через центр, будут главными центральными осями. Проведем их через точ-
ки B и С (рис.1.1, б).[2]
Главные моменты инерции кольца найдем как разность моментов инерции двух кругов, имею-
щих радиусы r и r
0
:
Рис. 1.1
I
y
= I
z
=
-
;
I
y
= I
z
=
= π (r
4
).
Момент инерции кручения будет равен полярному моменту инерции:
I
к
= I
r
= I
y
+ I
z
= τ(r
4
).
Площадь
A= π (r
2
).
Таким образом, труба представляет собой стержень со следующими
жесткостными характеристиками:
E I
y
=E I
z
= E π(r
4
);
E A=E π(r
2
);
●
Технические науки
364
№2 2016 Вестник КазНИТУ
G I
k
= π G (r
4
).
Определим составляющие объемной нагрузки и нагрузки, приложенной к боковой поверхности:
=-g
=
=0;
=0;
=q ;
= q .
По формулам
q
x
=
+
q
y
=
+
q
z
=
+
найдем нагрузки, приведенные к оси стержня, Нагрузки, параллельные осям ОУ и OZ:
=
ds;
=
ds.
Для d
s
справедлива зависимость
ds=-dy
=dz
.
Учитывая, что на внешнем контуре у и s связаны уравнением
y
2
+z
2
=r
2
,
найдем
.
Подставляя в эти равенства выражение для d
s
, получим
ds=
dy=
dz.
Учитывая эти зависимости в q
y
и q
z
, меняя пределы и интегрируя, найдем
q
y
=
dy=qr;
q
z
=
dz=qr
Составляющая, параллельная оси ОХ,
q
x
=
(r
2
).
Моментная нагрузка
m
x
=
.
Рис. 1.2
●
Техникалық ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
365
Учитывая, что с
г
=c
у
=0, получим
х
=0.
По формулам
R
x
=
;
=
+ R
y
c
z
– R
z
c
y
;
R
y
=
; L
z
=
;
R
z
=
L
y
=
.
найдем нагрузки в крайних сечениях.
На сечение х=l не наложены никакие связи и к нему не приложены внешние нагрузки. Следо-
вательно,
R
xl
= R
yl
= R
zl
=0;
Lxl=
=0; L
yl
=L
zl
=0.
Поперечное сечение x = 0 всей плоскостью жестко соединено с основанием. В этом случае по
плоскости контакта могут возникнуть силы взаимодействия, параллельные трем координатным осям.
Заменим их главным вектором и главным моментом, приведенными к точке О. Принимаем ее как
опорную. Из условия закрепления следует, что перемещения всех точек основания равны нулю, а
значит равны нулю линейные и угловые перемещения поперечного сечения. Для моделирования этих
условий на опорную точку надо наложить три линейные и три угловые связи, параллельные осям ко-
ординат (рис.1.2, а). Возникающие в них силовые R
x0
, R
y0
, R
z0
и моментные L
x0
, L
y0
, L
z0
реакции пред-
ставляют собой составляющие главного вектора и главного момента реактивных сил взаимодействия
трубы и основания. Прикладывая вдоль оси найденные выше нагрузки q
x
, q
y
, q
z
, получим расчетную
модель (рис.1.2, а). Условное обозначение жесткого соединения стержня с опорой показано на
рис.1.2, а. Общее число неизвестных реакций в связях равно шести. Следовательно, система статиче-
ски определима.
Реакции в связях можно найти из общих условий равновесия стержня. Для этого необходимо
рассечь связи и по их направлениям приложить соответствующие реактивные силы (рис.1.2, в) и со-
ставить шесть уравнений равновесия:
=0; R
x0
-q
x
l=0; R
x0
= q
x
l;
=0; R
y0
+ q
y
l=0; R
y0
= q
y
l;
=0; Rz
0
+ q
z
l =0; R
z0
= q
z
l;
=0;
=0;
=0;
=0;
;
=0;
=0;
.
На основании изложенного можно построить линейную модель стержни Она изображена на
рис.1.1, а. Жесткое закрепление можно изобразить, также иначе (рис. 1.2, б). [3]
ЛИТЕРАТУРА
[1] Байнатов Ж.Б., Темирболатова Д.Х., Materiály XI mezinárodní vědecko-praktická conference, г.Прага-
2015, 81-88 с.
[2] Леонтьев Н.Н. Основы стройтельной механики стержневых систем. М.:Изд-во АВС.1996-541с.
[3] Gsänger S., Pitteloud J.D. World wind energy association. 2012 Annual report//Энергетика-2013.
Байнатов Ж.Б., Фазылова Д.Х.
Цилиндрлік мұнара Тұтқаны Сорғыш жүктемен анықтай отырып, энергияны өндіру орнату және
есептеу.
Түйіндеме. Қазіргі заманғы жел энергиясы қарқынды дамуының кезеңдерін бастан өткеріп отыр . Энер-
гия мәселелері, оның балама көздері арқылы кең ауқымды энергия өндіру әдістерін әзірлеуді талап етеді, со-
ның ішіндегі ең маңыздысы- жел энергиясы . Жел энергиясын пайдалану перспективалары тиісті жел энерге-
тикалық ресурстардың болуымен анықталады , Қазақстан жел ресурстарына ерекше бай.
Түйінді сөздер : энергетикалық қондырғы , жүктеме есептеу , моменттік жүктеме.
●
Технические науки
366
№2 2016 Вестник КазНИТУ
Baynatov Zh.B., Fazylova D.H.
Energy generation unit and calculation of load on the body of cylindric tower considering suction and torsion
Summary. Modern wind energy is experiencing a period of rapid development. Exacerbated the problems of
energy will require the development of methods of large-scale energy production through alternative sources, the most
important of which is wind power. Prospects for the use of wind power are determined by the availability of relevant
wind energy resources, Kazakhstan is exceptionally rich in wind resources.
Key words: power plant, load calculation, moment load.
УДК 621.865.8(035)
Ә. Әсембай, А.А. Бейсембаев
(Казахский национальный исследовательский технический университет имени К.И.Сатпаева
Алматы, Республика Казахстан, ahan_kaz@mail.ru)
ФОРМАЛИЗОВАННОЕ ОПИСАНИЕ И АЛГОРИТМ ВЫБОРА МОДЕЛИ
ПРОМЫШЛЕННОГО РОБОТА ПРИ ПОСТРОЕНИИ РОБОТИЗИРОВАННОГО
ТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА
Аннотация. Рассмотрены вопросы построения математической модели и алгоритма предварительного
выбора модели серийно-выпускаемого промышленного робота при построении роботизированного технологи-
ческого комплекса для роботизации заданного производственного процесса. Математическая модель роботизи-
рованного технологического комплекса представлена в виде логических выражений, описывающих основные
технические ограничения на параметры рассматриваемой модели серийно-выпускаемого робота. Разработан
пошаговый алгоритм предварительного выбора серийно-выпускаемого промышленного робота, с учетом требо-
ваний грузоподъемности, погрешности позиционирования, вида привода, системы программного управления,
области применения, рабочего пространства.
Ключевые слова: Промышленный робот, манипулятор, кинематическая цепь, рабочее пространство, ро-
ботизация производственных процессов, роботизированный технологический комплекс, алгоритм выбора моде-
ли промышленного робота.
При роботизации производственных процессов, одной из задач является задача определения
применяемого промышленного робота. Эта задача может быть решена двумя путями. Первый путь
предполагает проектирование и изготовление новой модели робота, полностью удовлетворяющим
требованиям роботизируемого производственного процесса. Этот путь наиболее эффективен, но и
наиболее продолжительный во времени и приводит к достаточно большим финансовым затратам.
Второй путь связан с применением для роботизации заданного производственного процесса серийно-
выпускаемых роботов. Этот путь менее продолжителен и по сравнению первым путем, требует
меньших финансовых затрат [1].
Для роботизации производственного процесса вторым путем требуется осуществить выбор мо-
дели серийно-выпускаемого робота, который по своим техническим характеристикам наиболее дру-
гих роботов, удовлетворял требованиям роботизируемой операции. Эта процедура связана с анализом
большого числа моделей и параметров серийно-выпускаемых роботов. Поэтому актуальна проблема
разработки алгоритмов выбора моделей серийно-выпускаемых роботов при роботизации производ-
ственных процессов [3, 8].
В общем случае, роботизированный технологический комплекс (РТК), имеет в своем составе:
промышленный робот (ПР) со специальной оснасткой, технологическое и вспомогательное оборудова-
ния. Для формализованного описания РТК применим математический аппарат R-функций [4, 7]. При-
менение математического аппарата R - функций для получения математической модели в виде логиче-
ских выражений, позволяет использовать все преимущества алгебры логики в классическом математи-
ческом анализе, так как, в составе РТК имеются как дискретные, так и непрерывные элементы.
Математическую модель РТК представим в виде следующего логического выражения:
,
,
,
,
(1)
,
,
,
|