Xxii республикалық студенттер мен жас ғалымдардың ғылыми конференция материалдары



Pdf көрінісі
бет106/267
Дата18.10.2023
өлшемі8,13 Mb.
#117865
1   ...   102   103   104   105   106   107   108   109   ...   267
Байланысты:
Сборник материалов конференции (продолжение)

Linear regression 
Linear regression is a model of the dependence of the variable 
X
on one or more other 
variables (factors, regressors, independent variables) with a linear dependence function. Linear 
regression refers to the task of determining the "line of best fit" through a set of data points 
(Figure 1) and has become a simple precursor to non-linear methods that are used to train other 
sophisticated methods. Linear regression is the starting point for statistical learning methods, 
from it starts the acquaintance with the theme. Because of simplicity and low flexibility linear 
regression usually uses in combination with other techniques. For instance of using it in practical 
– article from Belarusian researches about measuring blood pressure parameters to determine the 
risk of secondary hypertension[2]. 
Figure 1 
Logistic regression 
Logistic regression predicts the probability of an event from the values of inputs. To do 
this the dependent variable 
y
, which takes only one of two values - as a rule, these are the 
numbers 0 (the event did not happen) and 1 (the event happened), and many independent 
variables (also called signs, predictors or regressors) - real 
X1, X2, ..., Xn
, based on the values of 
which are required calculate the probability of the adoption of one or another value of the 
dependent variable. Logistic regression is a method for constructing a linear classifier, which 
allows to evaluate the posterior probabilities of objects belonging to classes. The main idea of 
logistic regression is that the space of initial values can be divided by a linear boundary into two 
regions corresponding to the classes. If the source data points satisfy this requirement, then they 
can be called linearly separable (Figure 2). Logistic regression is often used for predicting 
diagnoses in classification manner.


228 
Figure 2 


Достарыңызбен бөлісу:
1   ...   102   103   104   105   106   107   108   109   ...   267




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет