Xxii республикалық студенттер мен жас ғалымдардың ғылыми конференция материалдары



Pdf көрінісі
бет108/267
Дата18.10.2023
өлшемі8,13 Mb.
#117865
1   ...   104   105   106   107   108   109   110   111   ...   267
Байланысты:
Сборник материалов конференции (продолжение)

Support vector machines 
The Support Vector Machines Method or SVM is a linear algorithm used in classification 
and regression problems. This algorithm is widely used in practice and can solve both linear and 
nonlinear problems. The essence of the “Machines” of Support Vectors is simple: the algorithm 
creates a line or hyperplane that divides the data into classes. The main task of the algorithm is to 
find the most correct line, or hyperplane, dividing the data into two classes. SVM is an algorithm 
that receives data at the input and returns such a dividing line. 
The SVM algorithm is arranged in such a manner that it looks for points on the graph that 
are located straight to the separation line in the closest way. These points are called support 
vectors. Then, the algorithm calculates the distance between the support vectors and the dividing 
plane. This is the distance called the gap. The major intention of the algorithm is to maximize the 
clearance distance. The best hyperplane is considered to be a hyperplane for which this gap is as 


230 
large as possible (Figure 5). Concrete and applied use case of SVM is solving the problem of 
classification for ultrasonic medicine image[5]. 
Figure 5 
Conclusion 
Sad reality is that we can meet practically applied statistical learning models in very rare 
cases. Although using statistical learning techniques already become the integral part of other 
spheres, such as banking system, insurance, internet recommendation system, marketing and etc. 
But there is no the same success in the field of medicine. Why it happens? First of all medicine 
datasets are very specific and usually confidential. So researchers have not too much open 
accessible datasets for increasing their competence level of building effective models for 
medicine. At second, medical datasets commonly not stand out for good quality, there are 
usually many missed values, incorrect values and insufficiency of informative inputs. And 
finally, the last one, but not by the importance, it is vital requirement in high competencies in 
two different spheres – medical and data science. Any predicted output have to be justified and 
checked out not only from mathematical-statistical perspective, but also from biological-medical 
aspect. Hope this article will attract and inspire people for investigating this crucial topic and 
find new answers of effective implementing statistical learning models in the healthcare. 


Достарыңызбен бөлісу:
1   ...   104   105   106   107   108   109   110   111   ...   267




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет