Математический анализ: введение в анализ, производная, интеграл


); § 7. Н аправление выпуклости графика функции



Pdf көрінісі
бет67/135
Дата31.10.2022
өлшемі16,21 Mb.
#46579
1   ...   63   64   65   66   67   68   69   70   ...   135
Байланысты:
Anti-Demidovich Lyashko I I i dr Tom 1 Vvedenie v matematicheskij analiz proizvodnaja integral 2001 ru T 358s

);
§ 7. Н аправление выпуклости графика функции. 
Точки перегиба
7.1. Выпуклость граф ика функции.
О п ред елен и е. Говорят, что график дифференцируемой в интервале ]а, Ь[ функции / : 
]о, Ь[ —f R млеет на нем выпуклость, направленную вниз (вверх), если он лежит в пределах 
указанного интервала не ниже (не выше) любой своей касательной.
Теорема. Достаточным условием выпуклости графика функции вниз (вверх), если функ­
ция всюду на интервале ]а, Ъ[ имеет конечную вторую производную, является выполнение 
неравенства f "( x)  ^ 0 (f " ( x ) ^ 0) при а < х < Ь.
7.2. Точки перегиба.
О п ред елен и е. Точка Мо(хо, уо) графика функции f , имеющего касательную, называ­
ется точкой перегиба этого графика, если существует такая окрестность точки хо оси 
абсцисс, в пределах которой график функции f слева и справа от хо имеет разные напра­
вления выпуклости.
Теорема. Точка 
Мо(х0, 
f(xo)), для которой либо f " ( x 0) = 0, либо /"(хо) не существу­
ет, есть точка перегиба, если f " ( x ) меняет знак при переходе через точку хо-
Найти промежутки выпуклости определенного знака и точки перегиба графиков следую­
щих функций:
108.
/ : х 
За;2 — х3, х € М.
◄ Вторая производная f " ( x ) = 6(1 — х) положительна при х < 1 и отрицательна при 
х > 1. Следовательно, согласно теореме пункта 7Л, на интервале ] — оо, 1[ график функции /
имеет выпуклость, направленную вниз, а на интервале ]1, +оо[ — выпуклость, направленную 
вверх. Согласно определению пункта 7.2, точка Мо (1, 2) есть точка перегиба графика. ►
109. / : г и / (х > 0).
◄ Поскольку вторая производная f " ( x ) = хх ((In х + I)2 + 1) > 0 при х > 0, то, согласно 
теореме п. 7.1, график данной функции имеет выпуклость, направленную вниз. ►


Достарыңызбен бөлісу:
1   ...   63   64   65   66   67   68   69   70   ...   135




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет