;
0
1
sin
5
6
cos
5
6
sin
5
7
1
cos
5
7
x
Cонымен осы есептің вольтерлік екенін кӛрсеттік .
Пайдаланылған әдебиеттер тізімі
1.
Отелбаев М., Кокебаев Б. К., Шыныбеков А. Н. К теории расширения и
сужения операторов. – Ч.1. Известия АН КазССР. Серия физико -
математическая, 1982. -№5.
2.
Бияров Б.Н., «О спектральных свойствах корректных сужений и расширений одного
класса дифференциальных операторов». Диссертация на соискание ученой степени
кандидата физико-математических наук. Алма-ата – 1989.
3.
Бияров Б.Н., Spektral'nye svoystva korrektnykh suzheniy i rasshireniy (Russian Edition) LAP
LAMBERT Academic Publishing (February 15, 2012)
4.
Райхан М. Стокс операторының қисынды тарылулары туралы. Вестник
КарГУ. Серия математика – 2008ж. - №4 С.99-102.
UDK 517.518.232
APPLICATION OF A DERIVATIVE AT THE DECISION OF INEQUALITIES
Narbekova G.M. , gggguldana@mail.ru
M.Auezov South- Kazakhstan State university , Shymkent
Supervisors of studies - N.Ashirbayev, G.Tleubayeva
The Differential calculus is widely used at research of functions. By means of a derivative
it is possible to find intervals of monotony of function, its extreme points, the greatest and least
values.
If function f has a positive (negative) derivative in each point of some interval it increases
(decreases) on this interval. At a finding of intervals of monotony it is necessary to mean, that if
function increases (decreases) on an interval
b
a;
and is continuous in points a and b it increases
(decreases) on a piece
b
a;
.
If the point x
0
is a point of an extremum for function f and in this point there is a derivative,
0
0
x
f
. In a point of an extremum function can not have a derivative. Internal points of a range
of definition which the derivative is equal to zero or does not exist, refer to critical. To establish,
whether function in the given critical point has an extremum, use following sufficient attributes of
existence of an extremum.
If function f is continuous in a point x
0
and there are such points
b
a, , that
0
0
x
f
(
0
0
x
f
) on an interval
0
; x
a
and
0
0
x
f
(
0
0
x
f
) on an interval
b
x ;
0
the point is
0
x
a point of a maximum (minimum) of function f .
37
For search of the greatest and least values f on a piece
b
a;
it is enough to compare
among themselves values f in points
b
a, and in critical points from a piece
b
a;
.
These results use at the decision of many elementary problems connected with
inequalities.
Let, for example, it is required to prove, that on some interval the inequality
x
g
x
f
takes place. We shall designate
x
g
x
f
through
x
F
. By means of derivative
x
F
it is found the least value
F
on the given interval. If it is not negative , in all points of
considered
4
2
0
a
interval
0
x
F
, etc.[1-4].
x
g
x
f
).
Problem 1. To prove that
x
e
x
e
x
e
x
e
for
e
x
0
.
The given inequality equivalently following:
x
e
x
e
x
e
x
e
ln
ln
.
Let
x
e
x
e
x
e
x
e
x
f
ln
ln
,
Then
x
e
x
e
x
e
x
e
x
e
x
e
x
f
ln
ln
.
While
2
2
2
2
2
2
x
e
x
e
x
e
x
e
x
e
x
e
,
2
ln
ln
ln
ln
2
2
2
e
x
e
x
e
x
e
,
That
0
x
f
at
e
x
0
. Hence, function f increases on an interval
e
;
0
. Function
0
f
- is
continuous. Therefore this point can be included in an interval of increase. As
0
0
f
, and f
increases at
e
x
0
,
0
x
f
at
e
x
0
. From here we receive the decision of a problem [5].
Problem 2. To prove the inequality
a
k
a
ctg
a
tg
k
k
2
cos
2
2
2
2
0
a
, k–naturals
The decision.
We can write the inequality in the form of:
a
k
a
tg
a
ctg
k
k
2
cos
)
(
2
2
2
2
/
2
/
.
Let all over again
4
0
a
. On this interval
tga
ctga
,
0
2
cos
a
, therefore last inequality
is equivalent to an inequality
a
k
a
tg
a
ctg
k
k
2
cos
)
(
2
/
2
/
.
Let's put
a
n
a
tg
a
ctg
a
f
n
n
2
cos
2
)
(
, where
2
k
n
.
Further,
0
2
sin
2
2
2
sin
4
2
sin
4
cos
sin
)
(
1
1
1
2
1
2
a
n
a
a
tg
a
ctg
n
a
n
a
tg
a
n
a
ctg
a
n
a
f
n
n
n
n
at
4
0
a
.
Here, as well as in the previous problem, that fact is used, that the sum of mutually return
positive numbers more or is equal 2. Thus, on an interval
4
0
a
function f decreases. In a
point
4
a
it is continuous, therefore
4
;
0
is an interval of decrease f . The least value of
function on this interval is
0
4
f
. Hence,
0
a
f
at
4
0
a
. For the specified interval the
38
inequality is proved. If
2
4
a
,
4
2
0
a
. However the inequality does not vary at is
replaced a on
a
2
. The problem 2 is solved.
Problem 3. What it is more
e or
e
?
The decision.
For the decision of a problem we investigate a question on existence of decisions of the
equation from two unknown persons:
a
b
b
a
,
0
a
,
0
b
. We shall exclude a trivial case
b
a
and for definiteness we shall assume, that
b
a . In view of symmetry of ocurrence
a
and b in the
equation, last remark does not limit a generality of reasonings. Clearly, that the equation
a
b
b
a
is
equivalent to the equation
b
a
a
b
ln
ln
, or
b
b
a
a
ln
ln
.
Let
x
x
x
f
ln
(1). Existence of decisions of the equation (1) equivalently to presence of
values
1
x and
2
x
)
(
2
1
x
x
such, that
2
1
x
f
x
f
. In this case the pair
)
;
(
2
1
x
x
is the decision of
the equation (1). Differently, it is required to find out, whether there will be a straight line
c
y
,
crossing the schedule of function f at least in two various points. For this purpose we investigate
function f . Its derivative
2
ln
1
x
x
x
f
in the field of definition f has a unique critical point
e
x
. At
e
x
0
0
x
f
function f increases, and at
e
x
0
x
f
function f
decreases. Therefore in a point
e
x
f accepts the greatest value
e
1
. As function
x
x
ln
is
continuous and increases on an interval
e
;
0
it on this interval accepts all values from
to
e
1
.
Similarly, on an interval
;
e
function f accepts all values from
e
1
;
0
. Following statements
follow from results of research of function f :
1. If
b
a
0
and
1
a
,
b
b
a
a
ln
ln
. Therefore
a
b
b
a
. Hence, the equation (1) and the
equation equivalent to it
a
b
b
a
has no decisions.
2. If
e
b
a
1
a
b
b
a
and the equation
a
b
b
a
also has no decisions.
3. If
e
a
b
,
a
b
b
a
.
Thus, if (a, b) is the decision of the equation
a
b
b
a
,
e
a
1
,
e
b . Moreover, at each
fixed value
e
a
1
there will be a unique value
e
b such, that
a
b
b
a
.
For the answer to a question of a problem 3 it is enough to put
e
a
b
and to take
advantage of the statement (1). So,
e
e
. The problem 3 is solved.
References
1.
Ораз К. Теңсіздіктерді дәлелдеуде туындының қолданылуы / Математика және физика.-
2004.-№6.
39
2.
Математикалық талдау (туынды және дифференциал): оқу қҧралы Әшірбаев Н.Қ.,
Әшірбаев Қ.А., Сҧлтанбек Т.С., Қаратаев Ж.// Шымкент 2008
3.
Дорофеев Г.М. Применение производных при решении задач в школьном курсе
математики // Математика в школе. – 1980. – №5 – с. 12-21, №6 – с. 24-30.
4.
И.А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах
(функции одной переменной): учебное пособие – М., 1973. – 400с.
5.
«Алгебра және анализ бастамалары» 10-сынып Шыныбеков Ә.Н.Атамҧра 2006.
6.
«Teaching of Mathematics» Kulbir Singh Sidhu .Oxford NY 2001.
УДК 517.518.12
ОБ ОДНОЙ АДДИТИВНОЙ ВЕСОВОЙ ОЦЕНКЕ ИНТЕГРАЛЬНОГО ОПЕРАТОРА
Рыскулова Б. С.,
ryskulova_bayan@inbox.ru
Евразийский национальный университет им. Л.Н.Гумилева, Астана
Пусть
,
,
),
,
(
r
b
a
b
a
I
и
неотрицательные измеримые на
I
функции,
интегральный оператор
1
,
)
(
b
x
dt
t
f
x
t
G
x
f
с неотрицательным ядром
x
t
G ,
)
(
b
x
t
a
удовлетворяющим при
b
x
s
t
a
условию
2
,
,
x
s
dG
x
t
G
где постоянная
1
d
не зависит от
.
,
,
x
s
t
Обозначим через
G
I
Q
Q
p
p
,
,
,
пространство измеримых на I функций
,
f для
которых конечен функционал
3
p
p
Q
f
T
f
f
p
где
p
норма пространства
.
1
,
p
I
L
L
p
p
Для
p
Q
f
определим оператор
b
x
dt
t
f
x
Pf
.
)
(
)
(
В работе исследуется весовая оценка вида
4
p
p
q
f
T
f
C
rPf
с константой
0
C
, не зависящей от
p
Q
f
.
Положим
).
(
)
(
sup
,
)
,
(
)
(
)
(
inf
)
(
1
1
1
1
z
dx
x
r
dx
x
t
G
x
ds
s
z
q
z
a
q
I
z
p
p
t
a
p
p
t
z
p
b
t
z
Достарыңызбен бөлісу: |