Задание
10.
Дано
семейство
подмножеств
множества
А
= {1, 2, 3, 4, 5}.
Являет
-
ся
ли
это
семейство
разбиением
множества
А
?
Если
нет
,
объяснить
,
почему
.
Ес
-
ли
да
,
выписать
в
виде
совокупности
пар
соответствующее
этому
разбиению
отношение
эквивалентности
.
1.
{3}, {1, 2, 4, 5}.
2.
{3}, {1, 4}, {2, 5}.
3.
{1, 2, 3}, {3, 4, 5}.
4.
{5}, {1, 4}, {2, 3}.
5.
{4}, {2, 5}, {1, 3}.
6.
{1, 4, 5}, {2}, {3}.
7.
{1, 4}, {2, 3}.
8.
{2, 3, 5}, {1}, {4}.
9.
{1, 3}, {2, 4}, {3, 5}.
10.
{1, 3, 4, 5}, {2}.
11.
{2}, {3}, {4}, {1, 2, 5}.
12.
{4}, {5}, {1, 2, 3}.
13.
{2}, {3}, {5}, {1, 4}.
14.
{2}, {1, 5}, {3, 4}.
15.
{1, 4}, {2, 5}, {4}.
16.
{5}, {1, 2, 3, 4}.
17.
{3, 4}, {1, 4}, {2, 5}.
18.
{3, 4}, {1, 2, 5}.
19.
{2}, {3}, {1, 5}.
20.
{1, 2, 3, 4, 5}.
21.
{1}, {3}, {4}, {5}, {2, 4}.
22.
{1}, {2, 5}, {3}, {4}.
23.
{1, 3, 4}, {2, 5}.
24.
{1}, {2, 3}, {4}, {5}.
25.
{2, 4}, {1, 3, 5}.
26.
{1, 5}, {2, 3, 4}.
27.
{1}, {2}, {3}, {4}, {5}.
28.
{2}, {3}, {1, 3, 5}.
29.
{1,2}, {3, 4, 5}.
30.
{1}, {2, 4}, {3, 5}.
14
Задание
11
1–17.
Доказать
:
1.
(
∀
A
)(
f
[
A
∪
B
]
=
f
[
A
]
∪
f
[
B
]).
2.
(
∀
A
)(
f
–1
[
A
∪
B
]
=
f
–1
[
A
]
∪
f
–1
[
B
]).
3.
(
∀
A
)(
f
–1
[
A
∩
B
]
=
f
–1
[
A
]
∩
f
–1
[
B
]).
4.
(
∀
A
)(
f
–1
[
A
\
B
]
=
f
–1
[
A
]\
f
–1
[
B
]).
5.
(
∀
A
)(
f
[
A
\
B
]
⊃
f
[
A
]\
f
[
B
]).
6.
(
∀
A
)(
f
[
A
]
∩
f
[
B
]
=
∅
→
A
∩
B
=
∅
).
7.
(
∀
A
)(
A
∩
B
=
∅
→
f
–1
[
A
]
∩
f
–1
[
B
]
=
∅
).
8.
(
∀
A
)(
f
[
f
–1
[
A
]]
⊂
A
).
9.
f –
инъекция
⇒
(
∀
A
)(
f
–1
[
f
[
A
]]
=
A
).
10.
f
–
сюръекция
⇒
(
∀
A
)(
f
[
f
–1
[
A
]]
=
A
).
11.
f
–
сюръекци
я
⇒
(
∀
A
)(
A
⊂
f
[
f
–1
[
A
]]).
12.
f
–
инъекция
⇒
(
∀
A
)(
f
–1
[
f
[
A
]]
⊂
A
).
13.
f
–
сюръекция
⇒
(
∀
A
)(
A
⊂
f
[
f
–1
[
A
]]).
14.
f
–
инъекция
⇒
(
A
∩
B
=
∅
⇒
15.
⇒
f
[
A
]
∩
f
[
B
]
=
∅
).
16.
f –
сюръекция
⇒
(
f
–1
[
A
]
∩
f
–1
[
B
]
=
17.
=
∅
⇒
A
∩
B
=
∅
).
18.
(
f
:
X
→
X
)
∧
(
∀
A
)(
f
[
A
]
⊂
A
)
⇒
f
=
X
ε
.
19.
(
f
:
X
→
X
)
∧
(
∀
A
)(
A
⊂
f
[
A
])
⇒
f =
X
ε
.
18–30.
Для
функции
f
:
R
→
R
определить
истинностное
значение
высказывания
:
1.
f
(
x
)
=
tg
x
, (
∀
A
)(
f
–1
[
f
[
A
]]
=
A
).
2.
f
(
x
)
=
x
2
, (
∀
A
)(
f
[
f
–1
[
A
]]
=
A
).
3.
f
(
x
)
=
x
3
, (
∀
A
)(
∀
B
)(
f
[
A
]
∩
f
[
B
]
=
f
[
A
∩
B
]).
4.
f
(
x
)
=
x
2
, (
∀
A
)(
∀
B
)(
f
[
A
]\
f
[
B
]
=
f
[
A
\
B
]).
5.
f
(
x
)
=
sin
x
, (
∀
A
)(
∀
B
)(
f
[
A
]
∩
f
[
B
]
=
f
[
A
∩
B
]).
6.
f
(
x
)
=
2
x
, (
∀
A
)(
∀
B
)(
f
[
A
]
∩
f
[
B
]
=
f
[
A
∩
B
]).
7.
f
(
x
)
=
log
2
x
, (
∀
A
)(
f
–1
[
f
[
A
]]
=
A
).
8.
f
(
x
)
=
cos
x
, (
∀
A
)(
∀
B
)(
A
∩
B
=
∅
→
f
[
A
]
∩
f
[
B
]
=
∅
).
9.
f
(
x
)
=
x
2
, (
∀
A
)(
∀
B
)(
f
[
A
]\
f
[
B
]
=
f
[
A
\
B
]).
10.
f
(
x
)
=
ctg
x
, (
∃
A
)(
∃
B
)(
A
∩
B
=
∅∧
f
[
A
]
∩
f
[
B
]
≠
∅
).
11.
f
(
x
)
=
–
x
2
+3
x
–2, (
∃
A
)(
∃
B
)(
f
[
A
∩
B
]
≠
f
[
A
]
∩
f
[
B
]).
12.
f
(
x
)
=
x
2
, (
∃
A
)(
f
–1
[
f
[
A
]]
≠
A
).
13.
f
(
x
)
=
x
4
, (
∃
A
)(
f
[
f
–1
[
A
]]
≠
A
).
Задание
12.
Доказать
методом
математической
индукции
.
1.
1
2
– 2
2
+ 3
2
–
4
2
+ ... + (–1)
n
-1
n
2
=
(–1)
n
–1
.
2
)
1
(
+
n
n
2.
(1–
4
1
)(1–
9
1
)(1–
16
1
) ...(1–
2
1
n
)
=
n
n
2
1
+
,
n
≥
2.
3.
n
3
+(
n
+1)
3
+ (
n
+2)
3
M
9.
4.
.
1
3
)
1
3
)(
2
3
(
1
...
7
4
1
4
1
1
+
=
+
−
+
+
⋅
+
⋅
n
n
n
n
5.
2
)
1
(
)
1
3
(
...
10
3
7
2
4
1
+
=
+
+
+
⋅
+
⋅
+
⋅
n
n
n
n
.
6.
u
1
=
1,
u
n
+1
=
u
n
+ 8
n
⇒
u
n
=
(2
n
–1)
2
.
7.
7
n
+1
+ 8
2
n
–1
M
57.
8.
1
2
+ 3
2
+ 5
2
+ ... + (2
n
–1)
2
=
.
3
)
1
2
)(
1
2
(
+
−
n
n
n
9.
3
2
n
+2
– 8
n –
9
M
64.
10.
2
1
2
2
5
+
+
⋅
n
n
+
1
2
2
2
3
+
+
⋅
n
n
M
19.
15
11.
1
2
5
+
n
+
1
2
2
3
−
+
⋅
n
n
M
19.
12.
n
2
7 –
n
2
4
M
33.
13.
1
1
2
2
5
+
−
⋅
n
n
+
1
2
1
2
3
−
+
⋅
n
n
M
19.
14.
x
+
1
1
+
2
1
2
x
+
+
4
1
4
x
+
+ ... +
n
x
n
2
1
2
+
=
1
1
−
x
+
.
1
2
1
1
2
+
−
+
n
x
n
15.
.
1
2
)
1
2
)(
1
2
(
1
...
5
3
1
3
1
1
+
=
+
−
+
+
⋅
+
⋅
n
n
n
n
16.
.
1
1
3
1
...
2
1
1
1
>
+
+
+
+
+
+
n
n
n
17.
2
2
1
+
2
3
1
+ ... +
2
1
n
<
n
n
1
−
(
n
> 1).
18.
(1 +
α
)
n
> 1 +
n
α
(
n
> 1,
α
> –1).
19.
–1 + 3 – 5 + 7 – ... + (–1)
n
(2
n
– 1)
=
(–1)
n
n
⋅
.
20.
2
1
⋅
+
3
2
⋅
+ ... +
)
1
(
+
n
n
=
.
3
)
2
)(
1
(
+
+
n
n
n
21.
3
2
1
⋅
⋅
+
4
3
2
⋅
⋅
+ ... +
n
(
n
+ 1)(
n
+ 2)
=
.
4
)
3
)(
2
)(
1
(
+
+
+
n
n
n
n
22.
2
1
2
⋅
+
2
2
3
⋅
+ ... +
n
(
n
– 1)
2
+ (
n
+ 1)
n
2
=
.
4
3
1
1
3
2
1
⋅
⋅
+
+
+
)
n
)(
)(n
n(n
23.
k
! +
!
k
k
⋅
+ (
k
+ 1)(
k
+ 1)! + ... +
!
n
n
⋅
=
(
n
+ 1)! , (
k
<
n
).
24.
5
1
1
⋅
+
9
5
1
⋅
+
13
9
1
⋅
+ ... +
)
1
4
)(
3
4
(
1
+
−
n
n
=
.
1
4
+
n
n
25.
4
3
+
36
5
+ ... +
2
)
1
(
2
1
2
+
+
n
n
n
=
1 –
.
2
)
1
(
1
+
n
26.
3
1
1
2
⋅
+
5
3
2
2
⋅
+ ... +
)
1
2
)(
1
2
(
2
+
−
n
n
n
=
.
)
1
2
(
2
)
1
(
+
+
n
n
n
27.
5
3
1
1
⋅
⋅
+
7
5
3
2
⋅
⋅
+ ... +
)
3
2
)(
1
2
)(
1
2
(
+
+
−
n
n
n
n
=
.
)
3
2
)(
1
2
(
2
)
1
(
+
+
+
n
n
n
n
28.
!
1
0
+
!
2
1
+ ... +
!
1
n
n
−
=
1 – .
!
1
n
29.
n
3
+ 11
n
M
6.
30.
2
n
-1
(
a
n
+
b
n
) > (
a
+
b
)
n
,
если
a
+
b
> 0.
Достарыңызбен бөлісу: |