Прикладная математика численные методы


Метод рядов, не требующий вычисления производных правой части уравнения



бет25/34
Дата06.03.2023
өлшемі1,04 Mb.
#71977
түріУчебное пособие
1   ...   21   22   23   24   25   26   27   28   ...   34
Байланысты:
Кацман Ю.А. - Прикладная математика. Численные методы (2000) (1) (1)

6.2. Метод рядов, не требующий вычисления производных
правой части уравнения


Естественно поставить задачу о таком усовершенствовании приведенного выше одношагового метода, которое сохраняло бы основные его достоинства, но не было бы связано с нахождением значений производных правой части уравнения


(6.5)
где xn+1 = xn + h.
Чтобы выполнить это условие (последнее), производные y(i)(x),
i = 2, 3,..., m, входящие в правую часть уравнения (6.5), можно заменить по формулам численного дифференцирования их приближенными выражениями через значение функции y' и учесть, что y'(x) = f [x, y(x)].
В случае m = 1 приближенное равенство (6.5) не требует вычисления производных правой части уравнения и позволяет с погрешностью порядка h2 находить значение y(xn+ h) решения этого уравнения по известному его значению y(xn). Соответствующее одношаговое правило можно записать в виде
(6.6)

Это правило (6.6) впервые было построено Эйлером и носит его имя. Иногда его называют также правилом ломаных или методом касательных. Метод Эйлера имеет простую геометрическую интерпретацию (см. рис. 6.2).




Рис. 6.2. Нахождение решения методом Эйлера




Замечание Метод Эйлера имеет порядок точности ~ h2 на одном шаге. Практическая оценка погрешности приближенного решения может быть получена по правилу Рунге.


6.3. Метод Рунге-Кутта


Изложим идею метода на примере задачи Коши:




(6.7)

Интегрируя это уравнение в пределах от x до x + h (0 < h <1), получим равенство


(6.8)
которое посредством последнего интеграла связывает значения решения рассматриваемого уравнения в двух точках, удаленных друг от друга на расстояние шага h.
Для удобства записи выражения (6.8) используем обозначение
∆y = y(x + h) – y(x) и замену переменной интегрирования t = x + h. Окончательно получим:
(6.9)
Указав эффективный метод приближенного вычисления интеграла в выражении (6.9), мы получим при этом одно из правил численного интегрирования уравнения (6.7).
Постараемся составить линейную комбинацию величин i,
i = 0, 1, ..., q, которая будет являться аналогом квадратурной суммы и позволит вычислить приближенное значение приращения y:


(6.10)
где

Метод четвертого порядка для q = 3, являющийся аналогом широко известной в литературе четырехточечной квадратурной формулы "трех восьмых", имеет вид
(6.11)
где

Особо широко известно другое вычислительное правило типа Рунге-Кутта четвертого порядка точности:


(6.12)
где

Метод Рунге-Кутта имеет погрешность четвертого порядка (~ h4 ).




Правило Рунге. Если приближенный метод имеет порядок погрешности m, то погрешность можно приближенно оценить по формуле


(6.13)

В формуле (6.13) O(xi) – главный член погрешности, и - приближенные решения в точке xi, найденные с шагом h и 2h соответственно.




Достарыңызбен бөлісу:
1   ...   21   22   23   24   25   26   27   28   ...   34




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет