Профессора рузуддинова


Тақырып № 46 Көп жақтар ұғымы. Призма және оның элементтері. Тік және дұрыс призма. Пpизманың жазбасы, бүйір және толық бетінің аудандары



бет2/6
Дата01.03.2023
өлшемі72,15 Kb.
#70914
1   2   3   4   5   6
5.1. Тақырып № 46 Көп жақтар ұғымы. Призма және оның элементтері. Тік және дұрыс призма. Пpизманың жазбасы, бүйір және толық бетінің аудандары.
5.2.Мақсаты: Білімгерлерді көпжақтар ұғымымен таныстыру. Призма және оның элементтері, тік және дұрыс призма, призма жазбасы, бүйір және толық бетінің аудандарын табуды үйрету.
5.3. Оқыту міндеттері:
Көпжақтар туралы мағлұмат;
Призма, оның элементтері;
Призма бүйір бетінің және толық бетінің аудандары;
5.4. Тақырыпқа байланысты негізгі сұрақтар:
Көпжақтар дегеніміз не?
Тік және дұрыс призманың айырмашылығы қандай?
Призманың бүйір бетінің және толық бетінің аудандарын қалай табады?

https://kk.wikipedia.org/wiki/%D0%9A%D3%A9%D0%BF%D0%B6%D0%B0%D2%9B


АҚПАРАТТЫҚ-ДИДАКТИКАЛЫҚ БЛОК
Көпжақ деп оның беті көпбұрыштардың шектеулі санынан тұратын денені айтады.
Мұндайда,екі көршілес(ортақ қабырғасы бар) көпбұрыштар бір жазықтықта жатпауы тиіс.
Осы көпбұрыштар көпжақтың жақтары, ал көпбұрыштың қабырғалары мен төбелері көпжақтың сәйкесінше қырлары мен төбелері деп аталады.


Призма деп екі жағы параллель жазықтықтарда жататын өзара тең көпбұрыштар, ал қалған жақтары осы көпбұрыштармен ортақ қабырғалары бар параллелограмдар болатын көпжақты айтады.
Көпбұрыштар призманың табандары, ал 
параллелограмдар призманың бүйір жақтары деп аталады.
Бүйір жақтарынан құрылған бет призманың бүйір беті деп аталады.

Призманың бүйір жақтарының ортақ қырлары оның бүйір қырлары деп аталады.


Егер призманың табандары n-бұрыштар болса, онда ол n-бұрышты призма деп аталады.
Бүйір қырлары табандарына перпендикуляр болатын призма тік призма деп аталады. Тік емес болса призманы көлбеу призма деп атайды.
Табандары дұрыс көпбұрыштар болатын тік призма дұрыс деп аталады.
Призманың табан жазықтықтарының арақашықтығын призманың биіктігі деп атайды.
Призманың бір жағында жатпайтын екі төбесін қосатын кесінді призманың диагоналі деп аталады.
Егер көпжақ өзінің кез келген екі нүктесімен бірге оларды қосатын кесіндіні қамтитын болса, онда ол дөңес көпжақ деп аталады.
Егер көпжақтың бетін қандайда бір қырлары бойымен кесіп, яғни бетті құрайтын барлық көпбұрыштар берілген жазықтықта жататындай жазатын болсақ, онда көпжақтың жазбасы деп аталатын фигура пайда болады.

Көпжақтың бетінің ауданы осы беттің құрамындағы көпбұрыштардың аудандарының қосындысы болып есептеледі.





Достарыңызбен бөлісу:
1   2   3   4   5   6




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет