Решение сравнений и их приложения


Примеры. Найти остаток от деления на 3 числа: А=-· Решение



бет4/14
Дата09.06.2022
өлшемі131,78 Kb.
#36581
түріРешение
1   2   3   4   5   6   7   8   9   ...   14
Байланысты:
reshenie sravnenii i ih prilozheniya 0

Примеры.

  1. Найти остаток от деления на 3 числа: А=-·

Решение: очевидно 131 (mod 3)
2 -1 (mod 3)
5 -1 (mod 3), тогда
-· 1-1 0 (mod 13)
Ответ: искомый остаток равен нулю, и А делится на 3.

  1. Доказать, что 1 + 13, если х=3n+1 (n=0,1,2,…).

Решение:
Докажем, что 1+(mod13) или 1+(mod 13)
1+=1++=
= 1+
Так как 271 (mod 13), то 1++1·3+1·9 (mod 13).
ч.т.д.
3. Найдём остаток при делении с остатком числа на 24.
Имеем: 1 (mod 24), поэтому
1 (mod 24)
Прибавляя к обеим частям сравнения по 55, получаем:
(mod 24).
Имеем: (mod 24), поэтому
(mod 24) при любом k є N.
Следовательно (mod 24). Поскольку (-8) 16(mod 24), искомым остатком является 16.

  1. Обе части сравнения можно умножать на одно и то же це­лое число.



2.Свойства сравнений, зависящие от мо­дуля.



  1. Если ab (mod т) и т n, то ab (mod п)

Доказательство.
Так как ab (mod т), то b) т. А так как т n, то в силу транзитивности отношения делимости b n), то есть аb (mod n).
Пример.
Найти остаток от деления 196 на 7.
Решение:
Зная, что 196=, можно записать 196 (mod 14). Воспользуемся предыдущим свойством, 14 7, получим 196 (mod 7), то есть 196 7.

  1. Обе части сравнения и модуль можно умножить на одно и то же целое положительное число.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   14




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет