4) f(x)=-18 ;
5) f(x)= -54 ; 6) f(x)=x14 – x12 + 3x9 + x3 – 9x2 +5x;
7) f(x)=2tg x + cos x– sin x; 8) f(x)=ctg x + x5- ;
9) f(x)=sin x + - 4x; 10) f(x)=x10· (7x + 15);
Дескриптор: -аргумент өсімшесі мен функция өсімшесінің анықтамаларын біледі;
- функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын таба алады.
ҚБ «Екi жұлдыз бiр тiлек» әдiсi .Бiрiн-бiрi бағалау
Дескриптор: - аргумент өсімшесі мен функция өсімшесінің анықтамаларын біледі;
- функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын таба алады.
Интернет ресурстары
Жалпы білім беретін мектептің 10–сыныбына арналған оқулық.
Бүгінгі сабақта: - аргумент өсімшесі мен функция өсімшесінің анықтамаларын біледі;
- функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын таба алады.
Кері байланыс:
10.4.1.16 - аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
10.4.1.17 - функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
Сабақтың мақсаты:
аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
тұрақты функцияның және дәрежелік функцияның туындыларын табу;
Сабақтың барысы:
Уақыты
Кезең дері
Педагогтің әрекеті
Оқушының әрекеті
Бағалау
Ресурстар
5 минут
Ұйымдас тыру
Сәлеметсіздерме!
Бүгін, Туындының анықтамасы тақырыбын қарастырамыз.
Бүгінгі сабақта меңгеретініңіз: - аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
- функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
Ұйымдастыру. Үй жұмысын тексеру. f функциясы берілген:
f(х)= -1; 2) f(х)= ; 3) f(х)= ; 4) f(х)=
а)1; 2; -1; 1,01 нүктелерінде үздіксіз бола ма? ә) Берілген нүктелер анықталу облысының ішкі нүктелері бола ала ма?
Амандасады.
Үй тапсырмасын айтады.
Оқушы: функциялардың графиктерін сала отырып, оған сипаттама береді, тұжырымдар жасайды.
Мұғалім: оқушыларды функцияның нүктенің аймағындағы үзіліссіздігі ұғымын түсінуге бағыт береді.
Оқулық
10 мин
Негізгі бөлім
Жаңа сабақ Аргумент және функцияның өсімшелері ұғымдарын анықтап алайық. у=f(х) функциясы берілсін. Аргументтің х және х1 мәндері функцияның анықталу облысынан алынған.
Анықтама: х1 –х айырымын аргументтің х нүктесіндегі өсімшесі д.а. Өсімшені Δх таңбасымен белгілеп, “дельта икс”деп оқиды,
яғни Δх= х1 –х
у=f(х) функциясының анықталу облысында тиісті кез келген х нүктесін алайық. Функцияның аргументі х-ке Δх өсімшесін берейік. Δх өсімшесін қабылдағаннан кейін аргументтің мәні (х+ Δх ) болады. Өсімшенің таңбасы оң да, теріс те болуы мүмкін.
Енді функция өсімшесіне тоқталайық. Аргумент х-ке Δх өсімшесін у=f(х) функциясы да өсімше қабылдайды. Бұл функцияның өсімшесі Δу деп белгіленіп, Δу =(у+ Δу )-у немесе , Δу = f(х+Δх)-f(х) теңдігімен анықталады,сонда функция өсімшесі функцияның екі нүктедегі мәндерінің айырымына тең.
Анықтама: қатынасының аргумент өсімшесі Δх-тің нөлге ұмтылғандағы шегі бар болса, онда ол шекті у=f(х) функциясының х нүктесіндегі туындысы д.а. у=f(х) функциясының х нүктесіндегі туындысының белгіленуі: у'=f`(х), f`(х)-тің оқылуы: х-тен эф штрих.
Демек,
Функцияның туындысын табу амалын функцияны дифференциалдау д.а.
х нүктесінде функцияның туындысы бар болса, онда f(х) функциясын осы нүктеде дифференциалданатын функция д.а. Егер функция аралықтың барлық нүктелерінде дифференциалданатын болса, онда осы аралықта дифференциалданатын функция д.а. у=f(х) функциясының х0 нүктесінде туындысы бар болса, онда осы нүктеде функция үзіліссіз болады.
Қосымша ақпарат көздерін пайдалана отырып түсінеді
Тақырып бойынша ресурстарды қарап, танысады.