Оқулықтан №37.1, №37.2.
Сергіту сәті. Логикалық тапсырмалар.
|
Есептер шығарады
Берілген тапсырма бойынша өз ойларын ортаға салып, пікірлерін білдіріп, топтық талдау жасайды. Талқылау нәтижесінде өзара бір келісімге келіп есепті орындайды.
Өз бетімен жұмыс.
|
Дескриптор:
- шектерді есептеуде және түріндегі анықталмағандықтарды ашу әдістерін қолдана алады.
ҚБ «Екi жұлдыз бiр тiлек» әдiсi .Бiрiн-бiрi бағалау
Дескриптор:
- функцияның нүктедегі шегінің анықтамасын біледі және оны есептейді.
|
Интернет ресурстары
Жалпы білім беретін мектептің 10–сыныбына арналған оқулық.
|
|
Жеке жұмыс
|
|
Тапсырмаларды орындайды.
|
|
Парақша лар
|
5 минут
|
|
Бүгінгі сабақта:
- функцияның нүктедегі үзіліссіздігінің және функцияның жиындағы үзіліссіздігінің анықтамаларын біледі.
Кері байланыс:
Білемін
|
Білдім
|
Білгім келеді
|
|
|
|
|
Тақырыпты меңгергенін анықтау
Үйге тапсырма. №37.3.
|
Кері байланыс
|
|
Бекітемін:
Қысқа мерзімді сабақ жоспары
Сабақтың тақырыбы: Шектерді табу. Бірінші тамаша шек. ББЖБ №8
Бөлім:
|
10.3В Функцияның шегі және үзіліссіздігі
|
Педагогтің Т.А.Ә.(болған жағдайда
|
|
Күні:
|
2сабақ
|
Пән/Сынып:
|
Алгебра, 10 сынып, ЖМБ
|
Қатысушылар саны:
|
Қатыспағандар саны:
|
Сабақтың тақырыбы:
|
Шектерді табу. Бірінші тамаша шек. ББЖБ №8
|
Оқу бағдарламасына сәйкес оқыту мақсаттары:
|
10.4.1.15 - бірінші тамаша шекті қолданып шектерді есептеу;
|
Сабақтың мақсаты:
|
Оқушылар:
- бірінші тамаша шекпен танысады.
- және түріндегі анықталмағандықтарды ашу әдістерін қолданады.
|
Уақыты
|
Кезең
дері
|
Педагогтің әрекеті
|
Оқушының әрекеті
|
Бағалау
|
Ресурстар
|
3 минут
|
Ұйымдас тыру
|
Сәлеметсіздерме!
Бүгін, Шектерді табу. Бірінші тамаша шек тақырыбын қарастырамыз.
Бүгінгі сабақта меңгеретініңіз:
- шектерді есептеуде және түріндегі анықталмағандықтарды ашу әдістерін қолдану;
Ұйымдастыру.
Үй жұмысын тексеру. f функциясы берілген:
f(х)= -1; 2) f(х)= ; 3) f(х)= ; 4) f(х)=
а)1; 2; -1; 1,01 нүктелерінде үздіксіз бола ма? ә) Берілген нүктелер анықталу облысының ішкі нүктелері бола ала ма?
|
Амандасады.
Үй тапсырмасын айтады.
Оқушы: функциялардың графиктерін сала отырып, оған сипаттама береді, тұжырымдар жасайды.
Мұғалім: оқушыларды функцияның нүктенің аймағындағы үзіліссіздігі ұғымын түсінуге бағыт береді.
|
|
Оқулық
|
5 мин
|
Негізгі бөлім
|
Жаңа сабақ Тамаша шек ұғымын енгізіңіз.
Осылайша:
.
анықталмағандық түріне келтірілетін тригонометриялық функциялардың шектерін есептегенде бірінші тамаша шек деп аталатын формуласын қолдана аламыз.
Бірінші тамаша шек салдарлары:
|
Қосымша ақпарат көздерін пайдалана отырып түсінеді
Тақырып бойынша ресурстарды қарап, танысады.
Сұрақтарға жауап береді.
|
«Екі жұлдыз бір ұсыныс»
Дескриптор:
- шектерді есептеуде және түріндегі анықталмағандықтарды ашу әдістерін қолдана алады.
|
Оқулық
|
10 мин
|
Бекіту тапсырма лары
|
Тапсырмалар: №1. 1.
2.
3.
4.
Оқулықтан №37.4, №37.5.
Сергіту сәті. Логикалық тапсырмалар.
|
Есептер шығарады
Берілген тапсырма бойынша өз ойларын ортаға салып, пікірлерін білдіріп, топтық талдау жасайды. Талқылау нәтижесінде өзара бір келісімге келіп есепті орындайды.
Өз бетімен жұмыс.
|
Дескриптор:
- шектерді есептеуде және түріндегі анықталмағандықтарды ашу әдістерін қолдана алады.
ҚБ «Екi жұлдыз бiр тiлек» әдiсi .Бiрiн-бiрi бағалау
Дескриптор:
- функцияның нүктедегі шегінің анықтамасын біледі және оны есептейді.
|
Интернет ресурстары
Жалпы білім беретін мектептің 10–сыныбына арналған оқулық.
|
25 минут
|
Жеке жұмыс
|
ББЖБ №8 орындайды.
|
Тапсырмаларды орындайды.
|
Бағалау критерийлеріне сәйкес бағаланады.
|
Парақша лар
|
2 минут
|
|
Бүгінгі сабақта:
- функцияның нүктедегі үзіліссіздігінің және функцияның жиындағы үзіліссіздігінің анықтамаларын біледі.
Кері байланыс:
Білемін
|
Білдім
|
Білгім келеді
|
|
|
|
|
Тақырыпты меңгергенін анықтау
Үйге тапсырма. №37.6.
|
Кері байланыс
|
|
Бекітемін:
Қысқа мерзімді сабақ жоспары
Сабақтың тақырыбы: Туындының анықтамасы
Бөлім:
|
10.3С Туынды
|
Педагогтің Т.А.Ә.(болған жағдайда
|
|
Күні:
|
.
|
Пән/Сынып:
|
Алгебра, 10 сынып, ЖМБ
|
Қатысушылар саны:
|
Қатыспағандар саны:
|
Сабақтың тақырыбы:
|
Туындының анықтамасы
|
Оқу бағдарламасына сәйкес оқыту мақсаттары:
|
10.4.1.16 - аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
10.4.1.17 - функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
|
Сабақтың мақсаты:
|
аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
тұрақты функцияның және дәрежелік функцияның туындыларын табу;
|
Сабақтың барысы:
|
Уақыты
|
Кезең
дері
|
Педагогтің әрекеті
|
Оқушының әрекеті
|
Бағалау
|
Ресурстар
|
5 минут
|
Ұйымдас тыру
|
Сәлеметсіздерме!
Бүгін, Туындының анықтамасы тақырыбын қарастырамыз.
Бүгінгі сабақта меңгеретініңіз:
- аргумент өсімшесі мен функция өсімшесінің анықтамаларын білу;
- функция туындысының анықтамасын білу және анықтама бойынша функцияның туындысын табу;
Ұйымдастыру.
Үй жұмысын тексеру. f функциясы берілген:
f(х)= -1; 2) f(х)= ; 3) f(х)= ; 4) f(х)=
а)1; 2; -1; 1,01 нүктелерінде үздіксіз бола ма? ә) Берілген нүктелер анықталу облысының ішкі нүктелері бола ала ма?
|
Амандасады.
Үй тапсырмасын айтады.
Оқушы: функциялардың графиктерін сала отырып, оған сипаттама береді, тұжырымдар жасайды.
Мұғалім: оқушыларды функцияның нүктенің аймағындағы үзіліссіздігі ұғымын түсінуге бағыт береді.
|
|
Оқулық
|
10 мин
|
Негізгі бөлім
|
Жаңа сабақ Аргумент және функцияның өсімшелері ұғымдарын анықтап алайық. у=f(х) функциясы берілсін. Аргументтің х және х1 мәндері функцияның анықталу облысынан алынған.
Анықтама: х1 –х айырымын аргументтің х нүктесіндегі өсімшесі д.а. Өсімшені Δх таңбасымен белгілеп, “дельта икс” деп оқиды,
яғни Δх= х1 –х
у=f(х) функциясының анықталу облысында тиісті кез келген х нүктесін алайық. Функцияның аргументі х-ке Δх өсімшесін берейік. Δх өсімшесін қабылдағаннан кейін аргументтің мәні (х+ Δх ) болады. Өсімшенің таңбасы оң да, теріс те болуы мүмкін.
Енді функция өсімшесіне тоқталайық. Аргумент х-ке Δх өсімшесін у=f(х) функциясы да өсімше қабылдайды. Бұл функцияның өсімшесі Δу деп белгіленіп, Δу =(у+ Δу )-у немесе , Δу = f(х+Δх)-f(х) теңдігімен анықталады,сонда функция өсімшесі функцияның екі нүктедегі мәндерінің айырымына тең.
Анықтама: қатынасының аргумент өсімшесі Δх-тің нөлге ұмтылғандағы шегі бар болса, онда ол шекті у=f(х) функциясының х нүктесіндегі туындысы д.а. у=f(х) функциясының х нүктесіндегі туындысының белгіленуі: у'=f`(х), f`(х)-тің оқылуы: х-тен эф штрих.
Демек,
Функцияның туындысын табу амалын функцияны дифференциалдау д.а.
х нүктесінде функцияның туындысы бар болса, онда f(х) функциясын осы нүктеде дифференциалданатын функция д.а. Егер функция аралықтың барлық нүктелерінде дифференциалданатын болса, онда осы аралықта дифференциалданатын функция д.а. у=f(х) функциясының х0 нүктесінде туындысы бар болса, онда осы нүктеде функция үзіліссіз болады.
|
Қосымша ақпарат көздерін пайдалана отырып түсінеді
Тақырып бойынша ресурстарды қарап, танысады.
Сұрақтарға жауап береді.
|
Достарыңызбен бөлісу: |