Пример 10. Определить момент инерции сечения, показанного на рис. 14, относительно главной центральной оси, не являющейся осью симметрии сечения. Сечение состоит из двутавра № 24 и швеллера № 24а.
Решение. 1. Центр тяжести сечения найден в примере 7 (хс = 6,11 см; Ус = 0).
2. Проведем центральные оси хьх2и уъ у2. Оси xlи х2совпали.
3. Проведем главные центральные оси. Ось и совмещаем с осью симметрии, а ось v проводим через центр тяжести С перпендикулярно оси и. Оси и, хги х2совпали.
4. Определим момент инерции сечения относительно оси v, так как по условию требуется найти момент инерции только относительно оси, не являющейся осью симметрии. Запишем формулу
Тогда /v= 1497 + 1631 = 3128 см4. Ответ: Jv = 312% см4 Задание для самостоятельной работы 5.Определить момент инерциш сечения относительно главной центральной оси, не являющейся осью] симметрии, по данным одного из вариантов, показанных на рис. 10. }
2.3. Построение эпюр поперечных сил и изгибающих моментов для простой балки 1. Определяют опорные реакции балки (см. порядок решения задачи самостоятельной работы 2).
2. Обозначают характерные сечения (точки) балки. Ими являются концевые сечения балки, опоры, точки приложения сосредоточенных сил и моментов, начало и конец распределенной нагрузки.
3. Строят эпюру поперечных сил Qx. Для этого определяют значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Q пРав.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx. 4. Строят эпюру изгибающих моментов Мх. Для этого определяют изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том
42
числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Л/лев и Л/прав. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.
Парабола имеет выпуклость в сторону действия нагрузки (при действии нагрузки сверху парабола обращена выпуклостью вниз). При этом, если эпюра Qxна рассматриваемом участке не пересекает нулевую линию, то эпюра Мх(она является параболой) может быть построена по двум точкам, так как все значения изгибающих моментов в промежуточных точках находятся между значениями в характерных сечениях. Если эпюра Qxпересекает нулевую линию, то под этим сечением эпюра Мхбудет иметь экстремальное (максимальное или минимальное) значение или вершину параболы. Положение этой точки находят по эпюре из подобия треугольников (см. примеры 11, 12). Затем находят значение изгибающего момента в этом сечении и строят эпюру Мхна участке с распределенной нагрузкой по трем точкам.
Соединив все значения изгибающих моментов по указанным правилам, получают график изменения изгибающих моментов по длине балки. Такой график называется эпюрой Мх. Приведенный способ построения эпюр Qxи Мхназовем способом построения эпюр по характерным сечениям. Такой способ является частным случаем более общего, хотя и более трудоемкого способа, который называется способом построения эпюр по участкам. Порядок построения эпюр при этом способе следующий. Балку разбивают на участки. Границами участков являются характерные сечения. Для каждого участка записывается
43
закон изменения усилий Qxи Мхи определяются их величины при граничных значениях. По найденным величинам усилий строят соответствующие эпюры.
Существует несколько способов проверки правильности построения эпюр. Наиболее простой способ проверки заключается в том, что суммы моментов всех левых и всех правых сил, взятые отдельно, в любой точке балки должны быть равны между собой.