Нестандартные методы решения уравнений.
Рыбенкова М.П.
МБОУ «Школа 140»
Н.Новгород.
Оглавление.
Глава I. Методические рекомендации к изучению нестандартных
методов решения уравнений.
Особенности обучения во втором концентре.
1.2. Нестандартные методы.
1.3. Развитие творческого мышления при решении уравнений нестандартными методами.
1.4.Методические рекомендации при организации занятий по решению уравнений нестандартными методами.
Глава I I. Нестандартные методы решения уравнений.
2.1. Решение уравнений с помощью исследования ОДЗ
2.2.Решение уравнений с использованием множества значений
2.3.Использование монотонности функций при решении уравнений
2.4.Использование эквивалентности при решении уравнений
2.5.Использование четности функций при решении уравнений
2.6.Использование векторов при решении уравнений
2.7.Использование неравенства между средним арифметическим
и средним геометрическим при решении уравнений
Заключение.
Список литературы.
ГЛАВА I. Методические рекомендации к изучению нестандартных методов решения.
1.1.Особенности обучения во втором концентре.
« Деятельности нельзя научить, но ею можно овладеть».1
В условиях современной школы перед учителем стоит задача так организовать учебный процесс, чтобы школа стала не местом приобретения суммы знаний, а средой для развития личности, для овладения интеллектуальными приёмами, необходимыми в будущем. Особенно это важно в старших класса, для выпускников, которым совсем скоро предстоит адаптироваться во взрослой жизни, самостоятельно принимать решения, брать на себя ответственность.
При организации уроков в 10 -11 классах, в том числе практических занятий, учителю, прежде всего, необходимо учитывать особенности концентрической структуры образования.
Обучение в рамках первого концентра предполагает изучение фактов. В 5 -9 классах ученик знакомится с фактами, накапливает их, систематизирует и усваивает, приобретая минимум математических знаний.
Второй концентр предполагает принципиально новый уровень усвоения учебного материала. Учитель ориентирует учащихся не на информационный, а на проблемный принцип усвоения. Таким образом, в центре внимания проблемное обучение математики. Сущность проблемного обучения заключается в постановке проблемы, задачи, требующей разрешения. Это обучение, основанное на активном привлечении учащихся к учебному процессу. В связи с этим существенно меняются функции учителя и ученика, цели обучения.
Если в рамках первого концентра преобладает сообщение учителем новой информации, то есть информационно – репродуктивный уровень, то во втором концентре упор делается на познание сути математического процесса, на установление причинно – следственных связей, на определение места и роли события, на анализ фактов самими учащимися под руководством учителя.
Таким образом, ученик превращается в субъекта учебной деятельности, а задача учителя – организаторская, управляющая (учитель – менеджер урока). Учебные проблемы легко обнаруживаются при установлении связей между теориями и фактами, между теориями и понятиями, между отдельными понятиями и т.д. Так, например, проблема, почему одни и те же, скажем, иррациональные уравнения нельзя решить путем возведения в одну и ту же степень левой и правой частей уравнений.
1.2«Нестандартные» методы.
Какие же методы называются нестандартными? « Нестандартные методы решения уравнений - это такие нетипичные методы, содержащие в себе оригинальную, творческую идею, это не традиционные методы, далекие от шаблона. Оценка метода решения уравнения с позиции традиционности (нестандартности) во многом субъективна: на сколько непривычен для учащегося предложенный прием, настолько он и нестандартен. И, наверное, самая высокая степень нестандартности идеи – это ее неожиданность.
Понятие «нестандартный» метод является относительным. Как только учитель познакомит учащихся с такими методами решения уравнений, они перестают быть «нестандартными».
Нестандартные задачи, опять – таки условно, можно разделить на два типа: нестандартные и стандартные по внешнему виду. Довольно часто задача первого типа представляет нечто вроде «функционального винегрета», т.е. ее конструируют функции из различных разделов математики. Например: .
С задачами второго типа иная ситуация. Их внешняя «успокоительная стандартность» - своего рода коварство. Зачастую по закону зловредности длинное решение менее замаскировано, чем короткое. В таких случаях бывает полезно еще раз проанализировать условие задачи, а самое главное, попытаться найти ее конкретные особенности, позволяющие обнаружить ее традиционную идею. Поэтому для решения такого рода задач особенно важны такие качества, как сообразительность, интуиция, высокая логическая культура. При этом вовсе не хотим сказать, что второй тип задач более сложный, чем первый: ощущение необходимости поиска нетрадиционной идеи еще не означает, что такова будет найдена2.
Универсального метода, позволяющего решить любое уравнение, любую нестандартную задачу, к сожалению, нет. Но, чтобы добиться хороших результатов, надо соблюдать следующие методические приемы:
1)Вызвать интерес к решению той или иной задачи. (Можно научить решать такие уравнения только в том случае, если у ученика будет желание.) Умение учителя отбирать интересные задачи.
2)Задачи не должны быть слишком легкими или слишком трудными, чтобы ученик не потерял веру в себя не предлагать ученикам те задачи, которые они заведомо не решат.
3)Если не решат заданную задачу, то не предлагать ее решение, а подсказать идею решения, или план, или вспомогательные задания.
4)Отмечать успехи учащихся в решении такого типа задач.
5)Нет ничего плохого в том, что при решении таких задач ученик обратился к кому-то за помощью, ему интересна задача, а изучение способа решения, предложенного кем-то другим, будет способствовать накоплению определенного запаса математических фактов.
1.3.Развитие творческого мышления при решении уравнений нестандартными методами.
Самостоятельный поиск нетрадиционного способа решения уравнения, ведущего к быстрому и рациональному способу решения, способствует развитию творческого мышления.
Психологами было затрачено много усилий и времени на выяснение того, как человек решает новые, необычные, нестандартные, творческие задачи. Однако до сих пор ясного ответа на вопрос о психологической природе творчества нет. Наука располагаем только некоторыми данными, позволяющими частично описать процесс решения человеком такого рода задач, охарактеризовать условия, способствующие и препятствующие нахождению правильного решения.
Мышление отличается от других психологических процессов тем, что оно почти всегда связано с присутствием проблемной ситуации, задачи которую нужно решить. В мышлении на основе информации делаются определенные теоретические и практические выводы.
Мышление — это движение идей, раскрывающее суть вещей. Eго итогом является не образ, а некоторая мысль, идея.
Что же такое творческое мышление? Одним из первых попытался сформулировать ответ на данный вопрос Дж.Гилфорд. Он считал, что «творческость» мышления связана с доминированием в нем четырех особенностей
A. Оригинальность, нетривиальность, необычность высказываемых идей, ярко выраженное стремление к интеллектуальной новизне. Творческий человек почти всегда и везде стремится найти свое собственное, отличное от других решение.
Б Семантическая гибкость, т.е. способность видеть объект под новым углом зрения, обнаруживать его новое использование, расширять функциональное применение на практике.
B. Образная адаптивная гибкость, т.е. способность изменить восприятие объекта таким образом, чтобы видеть его новые, скрытые от наблюдения стороны.
Г. Семантическая спонтанная гибкость, т.е. способность продуцировать разнообразные идеи в неопределенной ситуации, в частности в такой, которая не содержит ориентиров для этих идей.3
В ходе исследований творческого мышления были выявлены условия, которые способствуют быстрому нахождению решения творческой задачи:
1.Если в прошлом определенный способ решения человеком некоторых задач оказался достаточно успешным, то это обстоятельство побуждает его и в дальнейшем придерживаться данного способа решения. При встрече с новой задачей человек стремится применить его в первую очередь.
2.Чем больше усилий было потрачено на то, чтобы найти и применить на практике новый способ решения задачи, тем вероятнее обращение к нему в будущем. Психологические затраты на обнаружение некоторого нового способа решения пропорциональны стремлению использовать его как можно чаще на практике.
3.Максимум эффективности в решении интеллектуальных задач достигается при оптимальной мотивации и соответствующем уровне эмоционального возбуждения. Этот уровень для каждого человека сугубо индивидуален
Условия, которые препятствуют быстрому нахождению решения творческой задачи:
1.Возникновение стереотипа мышления, который в силу указанных выше условий мешает человеку отказаться от прежнего и искать новый, более подходящий путь решения задачи.
Один из способов преодоления такого сложившегося стереотипа состоит в том, чтобы на некоторое время вообще прекратить попытки решения задачи, а затем вернуться к ней, с твердой установкой пробовать для поиска решения только новые пути.
2.Интеллектуальные способности человека, как правило, страдают от частых неудач, и боязнь очередной неудачи начинает автоматически возникать при встрече с новой задачей. Она порождает защитные реакции, которые мешают творческому мышлению, обычно связанному с риском для собственного «Я». В итоге человек теряет веру в себя, у него накапливаются отрицательные эмоции, которые мешают ему думать. Чувство успеха для усиления интеллектуальных потенций людей столь же необходимо, как и ощущение правильности какого-либо движения для его усвоения.
Чем больше знаний имеет человек, тем разнообразнее будут его подходы к решению творческих задач. Однако соответствующие знания должны быть разнонаправленными, так как они обладают способностью ориентировать мышление на различные подходы к решению.
1.4.Методические рекомендации при организации занятий по решению уравнений нестандартными методами.
Почему уравнения? В течение всех лет обучения в школе решают различные виды уравнений: линейных, квадратных, дробно – рациональных, тригонометрических, показательных, логарифмических и т. д., но проблема остается: решение уравнений один из наиболее трудных заданий по математике. Даже если ученик правильно проводит тождественные преобразования, входящих в него выражений, безошибочно вычисляет. Нужно знать какие способы, в каких ситуациях применять, а это умение вырабатывается при знании различных методов решения и большой практике.
Если ученик научится решать уравнения. Он эти знания перенесет на решение неравенств, систем уравнений и неравенств. В нестандартных методах используются свойства всех функций входящих в состав уравнений, знания скалярного произведения векторов, неравенство между средним арифметическим и средним геометрическим положительных чисел, и многое другое. Это вырабатывает умения переносить знания с одного предмета на другой, и на другие учебные ситуации. Вооружив ученика различными методами решения уравнений, его мышление претерпевает изменения, учащайся сам начинает предлагать различные подходы к решению уравнений, предлагая порой интересные нестандартные решения. Его уже не пугает сложный вид порой и нестандартного уравнения, применяя различные способы решения которого нестандартность улетучивается.
Для углубления знаний по методам решения уравнений используются индивидуально-групповые занятия, начиная с третьей четверти.
Основная задача наших занятий: как можно полнее развить потенциальные творческие способности каждого ученика, не ограничивая заранее уровень сложности решения задач. Как видим, личная цель - подготовки к конкурсному экзамену - совпадает с общественной- повышением уровня математической подготовки выпускников средней школы. Не зависимо от цели у учащихся повышается интерес к математике, к творческим заданиям. Ориентируя школьников на поиски красивых изящных решений математических задач, учитель тем самым способствует эстетическому воспитанию учащихся и повышению их математической культуры. Главная цель задач - развить творческое и математическое мышление учащихся, заинтересовать их математикой, привести к «открытию» математических фактов.
Следует отметить тот факт, что любая математическая задача, решаемая на уроках, на внеклассных занятиях или дома должна обязательно чему-нибудь научить учащихся. Решение каждой задачи должно быть шагом вперед в развитии математических знаний, умений и навыков учащихся, должно обогащать их знания и опыт, учить их ориентироваться в различных ситуациях.
Систематическая работа по изучению способов решения уравнений поможет учащимися не только научиться решать задачи, но и самим их предлагать. Умение находить нестандартные, более рациональные пути решения уравнений, свидетельствует о культуре их мышления, хорошо развитых математических способностях.
Учитель должен помнить, что решение задач является не самоцелью, а средством обучения. Обсуждение найденного решения, поиск других способов решения, закрепление в памяти тех приемов, которые были использованы, выявление условий возможности применения этих приемов, обобщение данной задачи – все это дает возможность школьникам учиться на задаче. Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определенный опыт, сформировать умения самостоятельно и творчески применять полученные знания.
Чтобы добиться эффективности этих занятий необходимо выполнение следующих правил.
1)Новые идеи, не опирающиеся на дополнительные теоретические сведения, следует вводить через уравнения по схеме; уравнение - самостоятельный поиск решения – разбор ее решения – выделение идеи.
2) При решении таких заданий должен работать принцип регулярности, основная работа происходит не в классе, а дома.
3)Не стоит загружать ученика большой по объему, но не сложной работой, также как нельзя ставить перед ним непосильную задачу.
4) Ученик имеет право отложить трудную задачу( уравнение), если он над ее решением потрудился определенное время, и она у него не получилась. В этом случае процесс усвоения новых идей будет более эффективным.
5) Приветствуется правильная идея, в период накопления идей или же при решении трудных задач.
6) Полезно приводить различные приемы и методы решения одного и того же уравнения, а затем обсудить решения на предмет рациональности, красоты, нестандартности решения. При отыскании различных способов решения задач у школьника формируется познавательный интерес, развиваются творческие способности, вырабатываются исследовательские навыки.
7)Постоянный повтор при решении ранее изученных методов решения
применять полученные знания.
Достарыңызбен бөлісу: |