4. Conclusion
These data indicate that among the selected solvent which is sulfuric acid and oxidizing agents -
oxychlorides sodium and potassium may cause the junction of gold to solution, and that there is no need for a
second oxidizer as oxygen.
The materials in this article are the result of research according to the grant №1826/GF within budget
program 055 "The scientific and/or technical activities," sub 101 "grant funding for researches" for 2012-
2014(Republic of Kazakhstan).
Table 1. Values of the Gibbs energy (G
Т
) and equilibrium constant (К) for the reaction (3)
T, K
Н
Т
, kJ/mol
S
0
,
kJ/mol·K
G
Т
,
kJ/mol
K
Log(K)
298
0,00
0,00
-1479,78
53066,8
10,88
308
2983866,20
9841,98
-50424,79
1868943,9
14,44
318
6168096,80
20009,50
-199417,28
7631057,1
15,85
328
9559202,75
30502,56
-451712,72
17828906,4
16,70
338
13163695,00
41321,18
-810566,55
32967654,6
17,31
348
16988084,50
52465,34
-1279234,25
53568126,6
17,80
358
21038882,19
63935,04
-1860971,27
80166810,2
18,20
368
25322599,03
75730,29
-2559033,07
113315855,8
18,55
378
29845745,97
87851,09
-3376675,12
153583076,3
18,85
388
34614833,96
100297,43
-4317152,88
201551947,2
19,12
398
39636373,95
113069,33
-5383721,80
257821606,4
19,37
●
Химико-металлургические науки
№1 2014 Вестник КазНТУ
258
408
44916876,88
126166,76
-6579637,37
323006854,9
19,59
418
50462853,72
139589,75
-7908155,03
397738155,7
19,80
428
56280815,40
153338,28
-9372530,26
482661634,7
19,99
438
62377272,88
167412,35
-10976018,52
578439080,5
20,18
448
68758737,11
181811,97
-12721875,28
685747944,0
20,35
458
75431719,04
196537,14
-14613356,00
805281338,8
20,51
468
82402729,62
211587,86
-16653716,15
937748041,4
20,66
478
89678279,79
226964,12
-18846211,20
1083872490,4
20,80
488
97264880,51
242665,93
-21194096,61
1244394787,3
20,94
498
105169042,73
258693,29
-23700627,86
1420070696,1
21,07
508
113397277,40
275046,19
-26369060,40
1611671643,6
21,20
518
121956095,47
291724,64
-29202649,72
1819984718,9
21,32
528
130852007,89
308728,64
-32204651,27
2045812673,8
21,44
538
140091525,60
326058,19
-35378320,53
2289973922,8
21,55
548
149681159,56
343713,28
-38726912,97
2553302543,0
21,66
558
159627420,72
361693,91
-42253684,05
2836648274,0
21,77
568
169936820,03
380000,10
-45961889,24
3140876518,0
21,87
573
180615868,44
398631,83
-49854784,02
3466868340,0
21,97
Table 2. Values of the Gibbs energy (G
Т
) and equilibrium constant (К) for the reaction (4)
T, K
Н
Т
, kJ/mol
S
0
,
kJ/mol·К
G
Т
,
kJ/mol
K
Log(K)
1
2
3
4
5
6
298
0,00
0,00
-9458,40
339189,4
12,73
308
1277059,72
4211,77
-30233,35
1120568,4
13,93
318
2694028,01
8735,83
-94687,44
3623383,4
15,10
328
4257153,20
13572,18
-205943,53
8128502,6
15,91
338
5972683,61
18720,82
-367124,56
14931822,1
16,52
348
7846867,57
24181,76
-581353,52
24344266,0
17,01
358
9885953,40
29955,02
-851753,49
36691786,4
17,42
368
12096189,44
36040,59
-1181447,60
52315363,7
17,77
378
14483824,00
42438,49
-1573559,04
71571007,0
18,09
388
17055105,41
49148,71
-2031211,06
94829753,8
18,37
398
19816282,00
56171,26
-2557526,94
122477670,2
18,62
408
22773602,09
63506,15
-3155630,01
154915851,3
18,86
418
25933314,02
71153,37
-3828643,64
192560421,0
19,08
428
29301666,10
79112,94
-4579691,26
235842532,1
19,28
438
32884906,67
87384,86
-5411896,29
285208366,7
19,47
448
36689284,04
95969,12
-6328382,23
341119136,0
19,65
458
40721046,55
104865,74
-7332272,58
404051080,3
19,82
468
44986442,51
114074,71
-8426690,87
474495469,4
19,98
478
49491720,27
123596,05
-9614760,68
552958602,4
20,13
488
54243128,13
133429,74
-10899605,59
639961807,8
20,28
498
59246914,44
143575,79
-12284349,22
736041443,8
20,42
508
64509327,50
154034,21
-13772115,20
841748897,9
20,55
518
70036615,66
164804,99
-15366027,18
957650587,3
20,68
528
75835027,24
175888,14
-17069208,84
1084327958,9
20,80
538
81910810,56
187283,67
-18884783,88
1222377489,4
20,92
548
88270213,94
198991,56
-20815876,01
1372410685,0
21,04
558
94919485,72
211011,83
-22865608,95
1535054081,9
21,15
568
101864874,22
223344,47
-25037106,45
1710949246,0
21,26
573
109112627,77
235989,49
-27333492,27
1900752773,2
21,37
●
Химия-металлургия ғылымдары
ҚазҰТУ хабаршысы №1 2014
259
REFERENCES
1. Fomichev V.I., Zhautikov T.M. The behavior of gold and its forms of migration in the mineralization
processes. – Almaty, 2005. – P.1. – 172 p.
2. Zelikman A.N., Vol’dman G.M., Belyavskaya L.V. Hydrometallurgical processes theory. – M.: Metallurgiya,
1987. – 421 p.
3. Zhunussova G.Zh. About the possibility of gold aluminide dissolution in sulfuric acid in the presence of
manganese dioxide// Bulletin of the International Kazakh-Turkish University named after A.Yassavi, 2010. – #6(72).
– 115-120 p.
4 .Bayisbekov Sh.B., Zhunussova G.Zh., Akkazina N.T. The thermodynamic analysis of pyrite oxidation
reaction//Bulletin of the Semipalatinsk State University named after Shakarim. – Semipalatinsk, 2007. – #1. – 143–150 p.
REFERENCES
1. Fomichev V.I., Zhautikov T.M. Povedeniye i formy migratsii zolota v processah rudoobrazovaniya: nauchno-
teoreticheskii aspekt. – Almaty, 2005. – P.1. – 172 p.
2. Zelikman A.N., Vol’dman G.M., Belyavskaya L.V. Teoriya gydrometallurgicheskih protsessov.
– M.: Metallurgiya, 1987. – 421 p.
3. Zhunussova G.Zh. O vozmozhnosti protekaniya reaktsii rastvoreniya alyuminidov zolota v sernoi kislote v
prisutstvii dioxida margantsa // Vestnik MKTU im. Kh. Yassavi, 2010. –#6(72). – 115-120 p.
4. Bayisbekov Sh.B., Zhunussova G.Zh., Akkazina N.T. Termodinamicheskii analiz reaktsii okisleniya pirita
// Vestnik SGU imeni Shakarima. – Semipalatimsk, 2007. – №1. – 143–150 p.
Жүнісова Г.Ж., Еденбаев С.С., Бөленбаев М.Ж., Алтайбаев Б.Т.,Таймасова А.Н.
Сілтілі металдар оксихлоридтерінің катысуымен күкірт қышқылында алтынның еру
термодинамикасы.
Түйіндеме. Аталған мақала қатты алтынқұрамды шикізаттан зерттеу нәтижесінде алынған таза
алтынның мықты тотықтырғыш: гипохлорит натрий және перхлорат калийдің қатысуымен күкіртті қышқылда
еруінің термодинамикалық реакциясының дәлелі негізіне арналған.Таңдап алынған еріткіштер арасында күкірт
қышқылының ерітіндісі және тотықтырғыштар – натрий және калий оксихлориттерінің көмегімен алтынның
ерітіндіге өту мүмкіндігі және екінші тотықтырғыш – оттегінің керек еместігін алынған мәліметтерден байқауға
болады.
Негізгі сөздер: Натрий гипохлориті және калий перхлораты; Алтынқұрамды шикізаттар; Гиббс
энергиясы; Күкірт қышқылы;Термодинамикалық көрсеткіштер.
Жунусова Г.Ж., Еденбаев С.С., Буленбаев М.Ж., Алтайбаев Б.Т.,Таймасова А.Н.
Термодинамика растворения золота
в серной кислоте в присутствии оксихлоридов щелочных
металлов.
Резюме. Данная статья посвящена термодинамическому обоснованию реакций растворения
металлического золота,обнаруженного в исследуемых упорных золотосодержащих рудах в серной кислоте в
присутствии сильных окислителей: гипохлорите натрия и перхлорате калия.Полученные данные свидетельствуют
о том, что в среде выбранного растворителя – раствора серной кислоты и окислителей – оксихлоридов натрия и калия
возможен переход золота в раствор, а также о том, что нет необходимости применения второго окислителя –
кислорода.
Ключевые слова: Гипохлорит натрия и перхлорат калия; Золотосодержащие руды; энергия Гиббса;
Серная кислота; Термодинамические характеристики.
Zhunussova G.Zh., Yedenbayev S.S., Bulenbayev M.Zh., Altaibayev B.T.,Taimassova A.N.
Thermodynamics of gold dissolution by sulfuric acid in the presence of alkali metals oxychlorides.
Summary. This paper is regarding thermodynamic basis dissolution reaction of metallic gold, found in the
studied hard gold-containing ores by the sulfuric acid in the presence of strong oxidizing agents: sodium hypochlorite
and potassium perchlorate. These data indicate that among the selected solvent which is sulfuric acid and oxidizing agents -
oxychlorides sodium and potassium may cause the junction of gold to solution, and that there is no need for a second oxidizer
as oxygen.
Key words: Oxychlorides of sodium and potassium; Gold-containing ores; Gibbs energy; Sulfuric acid; The
thermodynamic characteristics.
●
Химико-металлургические науки
№1 2014 Вестник КазНТУ
260
УДК 669.213.634
G. Zhunussova, S. Yedenbayev, M. Bulenbayev, B. Altaibayev
(KazNTU named after K.I. Satpayev, Satpayev st. 22, 050013, Almaty, Kazakhstan)
THERMODYNAMICS OF PYRITE DISSOLUTION BY SULFURIC ACID IN THE PRESENCE OF
ALKALI METALS OXYCHLORIDES
Abstract. This article presents the results of the calculation of the thermodynamic characteristics of the systems
«FeS - H
2
SO
4
- O
2
- NaClO» and «FeS - H
2
SO
4
- O
2
- KClO
3
», which allowed us to estimate thermodynamic
probability of occurrence of oxidative leaching of pyrite. In the environment of sulfuric acid and the use of oxidants -
oxychloride and potassium, pyrite can pass into solution, with no need for a second oxidant - oxygen. The most
powerful oxidant is sodium hypochlorite.
Keywords: Oxychlorides of sodium and potassium; Pyrite; Gibbs energy; Sulfuric acid; The thermodynamic
characteristics.
1. Introduction
In the identification of the reactions of pyrite oxidation leaching in a solvent - sulfuric acid and an
oxidizing agent as sodium hypochlorite and potassium chlorate was necessary to evaluate the thermodynamic
probability of pyrite oxidative leaching reactions, because the gold in hard gold-containing ores in the form
of veinlet and other forms of intercrystalline and interstitial cavity of pyrite
4FeS
2
+25H
2
SO
4
+6NaClO=2Fe
2
(SO
4
)
3
+24SO
2
(г)+22H
2
O+3Na
2
SO
4
+6HCl(г) (1)
4FeS
2
+9H
2
SO
4
+6NaClO =2Fe
2
(SO
4
)
3
+8S+6H
2
O+3Na
2
SO
4
+6HCl(г) (2)
4FeS
2
+23H
2
SO
4
+2KClO
3
=2Fe
2
(SO
4
)
3
+24SO
2
(г)+22H
2
O+K
2
SO
4
+2HCl(г)
(3)
4FeS
2
+7H
2
SO
4
+2KClO
3
=2Fe
2
(SO
4
)
3
+8S+6H
2
O+K
2
SO
4
+2HCl(г)
(4)
Thermodynamic equilibrium calculations of reactions of oxidative leaching of gold-containing
minerals in sulfuric acid in the presence of pyrolusit [1-3] were done earlier.
2. Experimental
In this paper calculations of thermodynamic equilibrium in reactions (1), (2), (3) and (4) were done on
the «Outokumpu Ou» company’s licensed program at the temperature range 298-573 K. The calculations
results are shown in Tables 1-4 for the reactions (1), (2), (3) and (4) resp.
Table 1. Values of the Gibbs energy (G
Т
) and equilibrium constant (К) for the reaction (1)
T, K
Н
Т
, kJ/mol
S
0
,
kJ/mol·K
G
Т
,
kJ/mol
K
Log(K)
1
2
3
4
5
6
298
-180.272
4947.032
-1655.230
1.032
290.013
308
-180.571
4946.047
-1704.696
9.722
288.988
318
-181.117
4944.305
-1754.148
1.057
288.024
328
-181.884
4941.933
-1803.580
1.307
287.116
338
-182.846
4939.047
-1852.985
1.810
286.258
348
-183.977
4935.753
-1902.359
2.780
285.444
358
-185.249
4932.150
-1951.699
4.684
284.671
368
-186.637
4928.330
-2001.001
8.590
283.934
378
-188.112
4924.376
-2050.265
1.702
283.231
388
-189.648
4920.368
-2099.489
3.620
282.559
398
-191.217
4916.377
-2148.673
8.224
281.915
408
-192.791
4912.472
-2197.817
1.985
281.298
418
-194.343
4908.716
-2246.922
5.074
280.705
428
-195.845
4905.167
-2295.992
1.368
280.136
438
-197.268
4901.880
-2345.027
3.880
279.589
448
-198.585
4898.907
-2394.030
1.154
279.062
458
-198.868
4898.262
-2443.006
3.593
278.555
●
Химия-металлургия ғылымдары
ҚазҰТУ хабаршысы №1 2014
261
468
-199.892
4896.050
-2491.977
1.174
278.070
478
-200.733
4894.271
-2540.929
4.002
277.602
488
-201.364
4892.965
-2589.864
1.420
277.152
498
-201.752
4892.177
-2638.790
5.239
276.719
508
-201.945
4891.792
-2687.709
2.008
276.303
518
-168.943
4955.996
-2736.892
8.487
275.929
528
-168.013
4957.771
-2786.460
4.046
275.607
538
-166.671
4960.288
-2836.050
1.993
275.299
548
-164.865
4963.612
-2885.669
1.013
275.006
558
-162.564
4967.771
-2935.325
5.323
274.726
568
-159.691
4972.870
-2985.027
2.888
274.461
573
-157.986
4975.857
-3009.899
2.154
274.333
Table 2. Values of the Gibbs energy (G
Т
) and equilibrium constant (К) for the reaction (2)
T, K
Н
Т
, kJ/mol
S
0
,
kJ/mol·K
G
Т
,
kJ/mol
K
Log(K)
1
2
3
4
5
6
298
-1507.301
637.577
-1697.395
2.519
297.401
308
-1505.088
644.879
-1703.807
6.873
288.837
318
-1502.899
651.868
-1710.291
6.655
280.823
328
-1500.733
658.572
-1716.844
2.035
273.308
338
-1498.585
665.022
-1723.462
1.772
266.248
348
-1496.450
671.243
-1730.143
4.013
259.603
358
-1494.324
677.265
-1736.886
2.180
253.338
368
-1492.200
683.112
-1743.688
2.644
247.422
378
-1486.784
697.743
-1750.635
6.902
241.839
388
-1484.553
703.564
-1757.642
3.560
236.551
398
-1468.010
746.070
-1765.058
3.830
231.583
408
-1465.125
753.227
-1772.554
7.390
226.869
418
-1462.087
760.578
-1780.123
2.447
222.389
428
-1458.887
768.142
-1787.767
1.340
218.127
438
-1454.872
777.408
-1795.493
1.175
214.070
448
-1450.831
786.527
-1803.313
1.602
210.205
458
-1446.012
797.141
-1811.222
3.299
206.518
468
-1442.156
805.468
-1819.236
1.003
203.001
478
-1438.313
813.589
-1827.331
4.366
199.640
488
-1434.445
821.595
-1835.507
2.663
196.425
498
-1430.519
829.557
-1843.763
2.228
193.348
508
-1426.509
837.526
-1852.098
2.512
190.400
518
-1389.532
909.477
-1860.778
3.985
187.600
528
-1384.928
918.279
-1869.916
8.959
184.952
538
-1380.255
927.043
-1879.143
2.577
182.411
548
-1375.515
935.770
-1888.457
9.354
179.971
558
-1370.698
944.478
-1897.858
4.231
177.626
568
-1365.750
953.265
-1907.347
2.358
175.372
573
-1363.210
957.715
-1912.124
1.897
174.278
●
Химико-металлургические науки
№1 2014 Вестник КазНТУ
262
Table 3. Values of the Gibbs energy (G
Т
) and equilibrium constant (К) for the reaction (3)
T, K
Н
Т
, kJ/mol
S
0
,
kJ/mol·K
G
Т
,
kJ/mol
K
Log(K)
1
2
3
4
5
6
298
-19.003
4553.881
-1376.742
1.658
241.220
308
-22.238
4543.210
-1422.228
1.266
241.103
318
-25.728
4532.065
-1467.605
9.441
240.975
328
-29.454
4520.536
-1512.868
6.873
240.837
338
-33.394
4508.711
-1558.015
4.891
240.689
348
-37.526
4496.671
-1603.042
3.406
240.532
358
-41.826
4484.494
-1647.948
2.323
240.366
368
-46.271
4472.253
-1692.731
1.555
240.192
378
-50.837
4460.018
-1737.393
1.022
240.010
388
-55.498
4447.854
-1781.932
6.615
239.821
398
-60.228
4435.822
-1826.350
4.217
239.625
408
-65.001
4423.981
-1870.649
2.653
239.424
418
-69.792
4412.384
-1914.831
1.650
239.218
428
-74.573
4401.085
-1958.898
1.016
239.007
438
-79.318
4390.131
-2002.854
6.205
238.793
448
-83.998
4379.568
-2046.702
3.763
238.576
458
-88.587
4369.441
-2090.446
2.270
238.356
468
-93.056
4359.790
-2134.092
1.364
238.135
478
-97.378
4350.655
-2177.644
8.177
237.913
488
-101.525
4342.071
-2221.107
4.898
237.690
498
-105.465
4334.081
-2264.487
2.936
237.468
508
-109.246
4326.566
-2307.790
1.763
237.246
518
-112.745
4319.745
-2351.021
1.061
237.026
528
-115.880
4313.751
-2394.188
6.421
236.808
538
-118.601
4308.647
-2437.299
3.909
236.592
548
-120.855
4304.494
-2480.364
2.399
236.380
558
-122.615
4301.312
-2523.392
1.486
236.172
568
-123.802
4299.201
-2566.394
9.312
235.969
573
-124.128
4298.631
-2587.888
7.406
235.870
Table 4. Values of the Gibbs energy (G
Достарыңызбен бөлісу: |