Дәріс №2 «Қисық сызықты қозғалыс. Қисық сызықты қозғалыс кезіндегі үдеу»



Дата01.10.2023
өлшемі156,5 Kb.
#112275
Байланысты:
file-10772 (4)


Дәріс № 2 «Қисық сызықты қозғалыс. Қисық сызықты
қозғалыс кезіндегі үдеу»

Қисық сызықты қозғалыс – траекториясы қисық сызық болатын қозғалыс. Қисық сызықты траевтория бойынша планеталар, өзендер сулары қозғалады.


Қисық сызықты қозғалыс – жылдамдық модулі тұрақты болғанның өзінде әрқашанда үдемелі қозғалыс. Тұрақты үдеумен болатын қисық сызықты қозғалыс үдеу векторы мен нүктенің бастапқы жылдамдықтары жататын жазықтық бойымен болады. Түзу сызықты қозғалыстан айырмашылық қисық сызықты қозғалыста жылдамдық траекторияның әрбір нүктесінде өзінің бағытын өзгертіп отырады, басқаша сөзбен айтқанда бұрылады, кеңістікте иіледі немесе тұзақ жасайды.
Қисық сызықты қозғалысқа мысалдар:

  1. Таулы жермен қозғалған автобиль

  2. Самолеттің ұшқан және қонған кездегі қисық сызықты траектория жасауы;

  3. Жер серігінің эллипс орбитасымен қозғалуы;

  4. Айналып тұрған каруселден құлаған кездегі қозғалыс; ...

Қисық сызықты қозғалыстың түрлері:
Бірқалыпты қисық сызықты қозғалыс- дененің жылдамдығы тұрақты, бірақ оның бағыты траекторияның әрбір нүктесінде өзгеріп отырады.
Бірқалыпсыз қисық сызықты қозғалыс – қозғалыс кезінде дененің жылдамдығы траектория бойынша үнемі өзгеріп отырады.
Үдемелі қисық сызықты қозғалыс – жылдамдықпен қоса дененің үдеуі де өзгеріп отыратын қозғалыс.
Кез-келген қисық сызықты қозғалысты радиустары әртүрлі көптеген шеңбер доғаларының жиынтығы деп алуға болады.



Қисық сызықты қозғалыс кезінде өзгеретін шамалар:
- Х,у координаталары;
- қозғалыстың бағыты;
- жылдамдық пен үдеудің бағыты мен модулі;

Қисық сызықты қозғалысқа мысал ретінде горизонталь лақтырылған дененің қозғалысын алуға болады, оның траекториясы парабола.





1-cурет
, , , ,


Қозғалыстардың тәуелсіздік принципіне сәйкес парабола бойымен қозғалысты екі қарапайым қозғалысқа жіктеуге болады:


1) горизонталь бағытта денеге ешқандай күштер әсер етпейді, ол тұрақты жылдамдықпен бірқалыпты қозғалады:
,
2) Вертикаль бағытта дене биіктіктен еркін құлайды. Сондықтан. еркін құлаған денеге арналған теңдеулерді қолданамыз:
, ,
Траекторияның кез-келген нүктесіндегі жылдамдығы: , мұндағы
, .
Дененің құлау уақыты
Дененің лақтырылған жерден құлаған жерге дейінгі ара қашықтығы :



Горизонтқа бұрыш жасай лақтырылған дененің қозғалысы
Горизонтқа бұрыш жасай лақтырылған дененің қозғалысы қисық сызықты қозғалыс, траекториясы парабола, параболаны екі бөлікке бөлуге болады (І, ІІ) (2-сурет).

2-сурет

Қозғалыстардың тәуелсіздігі принципінен парабола бойымен болатын күрделі қозғалысты екі қарапайым қозғалыстарға жіктеуге болады:


1) Горизонталь бағытта денеге ешқандай күштер әсер етпейді.
, ,
2) Вертикаль бағытта: ,
3) Құлау мезетінде , осыдан
4) Параболаның екі тармағы да бірдей екенін ескерсек, онда көтерілу уақыты мен құлау уақыты бірдей және ола қозғалысқа кеткен уақыттың жартысына тең болады:


5) Дененің лақтырылған жерден құлаған жерге дейінгі ара қашықтығы

Үдемелі қозғалыстағы дененің тізбектелген әртүрлі уақыт аралығында жүрген жолы тақ сандардың қатарына тең болады:

Дененің құлау кезіндегі алғашқы 1 секундтағы жүрген жолы еркін түсу үдеуінің жартысына тең болады:






Достарыңызбен бөлісу:




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет