Матрицалар: Суреттер мен диаграммалар сияқты, матрица аналитикалық визуалдандырудың
ерекше форматы болып табылады. Майлз пен Хьюберман матрицаны «қатарлар мен бағандар
түрінде екі тізімнің «қиылысуының» жалпы мағынасы ретінде» анықтайды (1994: 93). Авторлар талдау
барысында матрицаны зерттеушімен құрудың келесі артықшылықтарын келтіріп отыр:
Бұл жағдай сізге зерттеу міндеттері туралы жəәне сіздің мəәліметтеріңіздің қандай бөліктерінің оларды жүзеге асыру үшін қажетті
екендігі туралы ойландырады; олар сізге тиісті ақпаратты жіберіп қоймастан толық талдау жүргізуге мəәжбүрлейді; жəәне олар
сіздің ақпаратыңызды байланысты түрде шоғырлап, ұйымдастырады. Визуалдандыруды сіз соңғы есепке қосқан кезде бұл
артықшылықтар екі еселенеді; оқырман сіздің ойыңыздың барысын біршама сенімділікпен тудыра алады. (Miles and Huberman,
1994: 239)
Матрицаның құрылымы қатарлар мен бағандарда орналасқан екі айнымалыны салыстыруға
негізделген. Мəәселен, қатардағы айнымалы белгілі бір тақырып үшін кодтар жинағы болуы, ал
бағандағы айнымалы ақпарат берушілердің белгілі бір тобы болуы мүмкін.
Кесте 8.2 Айнымалылар матрицасының мысалы: оқыту түрлері, жынысы бойынша
Оқушы ұлдар
Оқушы қыздар
Басқалар қалай оқиды
0
1
Жаңа тақырыптарды үйрену
0
1
Жаңа тілді үйрену
1
2
Басқалардан үйрену
1
1
Мəәдениетті үйрену
3
2
Жазуды жетілдіру
2
1
Тілді үйрену
2
1
Analysing Qualitative Data
421
Матрицалар сонымен бірге пәндік зерттеу форматы үшін сәйкес келеді, сондықтан
кодталған мәліметтер жеке тұлғалар үшін немесе басқа талдау бөлшектері үшін, 8.2
кестеде келтірілгенге ұқсас топтарға емес, берілуі мүмкін. Бұл кесте жыныс сияқты
тәуелсіз айнымалылар негізінде түзілген. 8.2 кестеде осы тарауда бұрын келтірілген
оқушылардың онлайндық өзара әрекетін зерттеу үшін NVivo бағдарламасының
көмегімен түзген матрицаның бөлігі келтірілген. Мәліметтерді ұйымдастыру тізімі
келтірілген тақырыптарға кодталған жауаптарда маған жыныс айырмашылығын
табуға мүмкіндік берді: атап айтқанда, матрица хабарламалар тақтасын пайдалану
түрлі оқыту түрлеріне әкелетіні туралы оқушылардың түсініктемелеріне жасаған
менің талдауыммен бекітіледі. NVivo сияқты бағдарламамен түзілген матрицаның
айырмашылығы – таңдап алынған сілтемелерге деген мүмкіндікке бірнеше ұяшыққа
басу арқылы алуға болады. Қолмен жасалған матрицаларда ұяшықтар сұхбатта
келтірілген негізгі тақырыптарды білдіретін мәлімдемелерді (осында көрсетілгендей
сандардың орнына) қамтуы мүмкін. Осылайша, зерттеуші негізгі туындайтын
дәлелдемелерге аралық ауызша шолу жасау арқылы ұяшықтарды толтыруы тиіс.
8.1 тапсырма
Осы тараудағы жазылымнан алынған үзіндіні тағы бір рет оқып шығып, оның
көмегімен келесі ашық кодтарды кодтаңыз:
ағылшын тілінде сөйлесу
француз тілінде сөйлесу
оң қарым-қатынас
теріс қарым-қатынас
тілдік қиындықтар
Қандай басқа концепциялар үзіндіден туындайды және сіз оларды қалай
кодтар едіңіз?
Қандай in-vivo кодын зерттеуші осы үзіндіден таба алады?
Негізгі ойлар
Бұл тарауда сапалық мәліметтерді талдау үдерісінің кейбір негізгі
ерекшеліктерін келтіріп отырмын. Мен сонымен бірге зерттеуші педагог үшін
ерекше пайдалы болуы мүмкін тәжірибелік құралдар мен стратегияларды
Analysing Qualitative Data
422
Рефлексияға арналған сұрақтар
1 Мәліметтерді тіркеу үшін қандай құралдарды пайдаланасыз және
мәліметтерді талдауға қалай қол жетімді етесіз?
2 Шетке шығып, белгілі нәрсені белгісіз етіңіз. Жазылым сізбен сөйлесуі
керек; қойылған сұрақтар мен мәселелерге аса назар аудармаңыз.
3 Сапалық талдау бағдарламасының сіз үшін талдау жүргізбейтінін есте
сақтаңыз. Сіз мұны орындауыңыз қажет. Компьютерлік бағдарлама өз
мәліметтеріңізді оңайырақ ұйымдастыруға мүмкіндік береді, өйткені
мәліметтердің белгілі бір бөліктеріне топталып, шоғырланған болуы тиіс.
4 Сапалық зерттеудің шынайылыққа жеткізбейтінін есте сақтаңыз. Өз
ойларыңызды абайлап келтіргеніңіз дұрыс болады, мәселен, «…екен деп
болжам жасауға болады».
көрсететін мысалдар да келтірдім. Мен, басынан бастап, сұхбат жүргізу
барысында, зерттеуші орталық тақырыптар мен зерттеу мәселелеріне белгілі
бір онлайн талдау (кейде жауап алушымен бірге) жүргізе алатынын айттым.
Келесі кезең – транскрипциялау жүйесін жүйелі түрде қолдану есебінен
жазылым үлгісіне бастапқы мәліметтерді айналдыру болып табылады.
Индуктивті және дедуктивті тәсілдердің қоспасының есебінен түзілуі
мүмкін кодтау ұстанымдары арқылы кейіннен жазылымды кодтауға болады.
Ұстанымдар әрбір көрсетілген кодтың сипаттамасын қамтуы және есептің
әдістемелік тарауында негізделген болуы тиіс. Код – бұл белгілі бір зерттеу
концепциясына қатысты затбелгі болып табылады. Ашық кодтау жазылымды
түрлі концепциялармен байланысты үзінділерге бөледі. Тақырыптық кодтау
түрлі ашық кодтар арасындағы байланыс негізінде теориялық талдаудың
мейлінше жоғарғы деңгейіне жеткізеді. Компьютерлік сапалық талдаудың
артықшылығы – ол мәліметтерді сақтау, ұйымдастыру және өңдеу үдерісін
жеңілдетеді. Визуалдандыру мен матрицалар екі негізгі себептер бойынша
сапалық мәліметтерді талдаудың пайдалы құралы болып табылады: олар
талдауды құрылымдау үшін база ретінде қызмет етеді; және ұзақ мерзімдік
зерттеу кезінде жиі қолданған жағдайда талдау барысы туралы ақпаратты
қамтиды. Визуалдандыру мен компьютерлік бағдарлама көмегімен түзілген
матрицалар бастапқы кодталған жазылымға гиперсілтеме ұсынады.
Analysing Qualitative Data
423
Қосымша оқу үшін
Saldana, J. (2009) The Coding Manual for Qualitative Researchers. London: Sage.
Silverman, D. (2010) Interpreting Qualitative Data, (3rd edn). London: Sage.
Taking A Quantitative Approach
424
Taking A Quantitative Approach
425
TAKING A QUANTITATIVE APPROACH
MARK WINTERBOTTOM
CHAPTER 9
Chapter Overview
A quantitative approach means using measurements and numbers to help formulate
and test ideas. It usually involves summarizing numerical data and/or using them to
look for differences and associations between sets of numbers. In this chapter, I’ll look
at approaches to collecting and interpreting quantitative data. In the next chapter,
you’ll learn more about using statistics to analyse them.
If you have a natural science background, you may feel at home here, but bear in
mind the complexity of human behaviour – don’t ignore the depth of data available
through the qualitative approaches outlined elsewhere in this book – achieving a fully
natural scientific approach in a school context is almost impossible. Read this chapter
together with Chapter 12. Never collect a set of data before thinking about how to
analyse it!
Before I get going, let’s look at some fundamental words and ideas, which can help
you to talk about, read about, evaluate and plan quantitative approaches. I’ll then
introduce you to two approaches for planning your own research, and look at some
ways in which school performance data is used ... and misused!
Taking A Quantitative Approach
426
IDEAS AND DEFINITIONS
Variables
A quantitative approach usually means measuring a property of something or someone.
That property is called a variable. Variables are called variables because they are
entities that can vary. You can collect quantitative data about individuals by designing
questionnaires or tests. Alternatively, you can simply record data by observing the subjects
‘from afar’; it all depends on the data you want. However, do bear in mind that
the act of collecting data can sometimes change the data you get! Some examples of
variables include:
• the number of students ‘on roll’
• the test result
• the proportion of students gaining five GCSEs at A–C
• the tier (e.g. primary, secondary, etc.)
• the school governance system.
Variables described using numbers are quantitative (e.g. the proportion of students
gaining five GCSEs at A–C). Those described by categories are qualitative or categorical
(e.g. the school governance system – foundation, voluntary-aided, etc.). Although this
chapter is about a quantitative approach, we usually look at qualitative variables as well.
Quantitative variables fall into two types. Continuous variables can take any value in a
given range (e.g. 3.2, 4.798), whereas discrete variables have clear steps between their
possible values (for example, you can’t get 100.324 pupils at a school!).
Another way to think about variables is the scale, or level of measurement that
we use. The scale itself determines whether they’ll be qualitative/quantitative or
continuous/discrete.
• Nominal scales are for qualitative variables to categorize observations. The value assigned
to a group is just a label, and implies nothing about quantity. Sex would be a variable
measured with a nominal scale: we could use ‘1’ for boys and ‘2’ for girls.
• Ordinal scales assess rank or order and yield discrete variables. Imagine you rank the
pupils in your class according to test score; the best student has a rank of 1, etc. Rather
than just being labels (as above), a ‘1’ is better than a ‘2’. This type of scale gives an
effective summary, but the exact value of the differences between each person’s scores
is unclear, and not necessarily identical.
• Interval and ratio scales provide discrete or continuous data where there are equal
intervals between the units of measurement (for example, a minute is the same length
however you measure it!). In a ratio scale, a zero means zero – there are no children or
they got no answers right. In an interval scale, the zero is relative – e.g. zero may describe
a baseline motivation level.
Taking A Quantitative Approach
427
Validity and reliability
Some variables are direct measures of what we’re interested in – recording a pupil’s sex is a
direct measure of their sex. Others are more indirect measures. For example, test scores are
an indirect measure of pupils’ learning. It is important that such measures provide a genuine
measure of the underlying construct. Such validity is important when collecting your own
data, and when interpreting other people’s data and conclusions.
It is also important to consider reliability – the consistency and repeatability of data collected
over time, across different samples, and across different measures of the same underlying
construct. Box 11.1 suggests some ways to assess reliability using one pilot group, or using
two groups that are closely matched for variables relevant to your study.
Samples and populations
When collecting quantitative data, distinguishing between your sample and your population
is important. A sample is a sub-group of the population. Collecting data about a sample that
is representative of a wider population lets you draw conclusions about the population. We
often use samples because measuring all the individuals in the population is impractical.
To ensure your sample is representative, it’s essential to understand who your population
is – this is something it is easy to overlook. For example, if you want a study which is
generalizable to the population of all the 14-year-old students in the country, then you
would randomly choose your sample from all the 14-year-olds in the country – this is so-
called probability sampling. You can see four types of probability sampling in Box 11.2.
BOX 9.1
Assessing reliability
• Use one questionnaire with one group on different occasions and see if their
answers are significantly correlated (see Chapter 12). (Be aware that they may
remember their responses though!).
• Use two different questionnaires (but whose questions examine the same
ideas) on different occasions with the same group, and look at the consistency
between responses to matched questions.
• Use one questionnaire with both groups, and check that their responses are
not significantly different.
• Use two questionnaires (whose questions examine the same ideas) on
different occasions with both groups and check that responses to matched
questions are not significantly different.
Taking A Quantitative Approach
428
However, your own research is likely to happen within your own school and often in
your own classroom – this is so-called convenience sampling, a type of non-probability
sampling (see Box 11.3). The children in your class are not representative of all the
14-year-old children across the country, and you cannot therefore make generalizations.
Your pupils’ characteristics may be dependent on upbringing, socio-economic group,
location, year group, on your idiosyncrasies as a teacher, and many other variables.
Hence, when conducting research in your own classroom, your class is the population –
there isn’t a wider group to which you can generalize your findings.
BOX 9.2
Probability sampling
• Random sampling: Here there is an equal chance that each member of the
population is included. Including one individual in the sample has no influence
on whether another individual is included.
• Systematic sampling: Sometimes practicalities may make it preferable to
sample individuals in some sort of order – say every fourth subject in a line.
To do so, you should randomize the list of individuals and choose your starting
point randomly.
• Stratified sampling: You may suspect that other variables (e.g. sex) could affect
your results. To try to eliminate the effect, you would randomly choose half your
subjects from the boys and half your subjects from the girls.
• Stage sampling: You can stratify your sampling at a number of levels. For
example,
if you thought that the year group and tutor could affect your data, you
would randomly choose year group, then within each, randomly choose tutor
groups, and then within each again, randomly choose the pupils to study.
BOX 9.2
Non-probability sampling
• Convenience sampling: You use individuals to whom you have easy access. You
cannot generalize your conclusions to a wider population.
• Quota sampling: You may suspect a particular variable (e.g. sex) could affect
your results. To eliminate any influence, randomly choose your subjects from
boys and girls, but in proportion to the number of boys and girls in the group
of pupils you are interested in (e.g. the population of pupils in Cambridgeshire).
Your findings are only generalizable to this limited population of pupils.
Taking A Quantitative Approach
429
If you have a natural science background, you may feel this makes your research rather
pointless – after all, if it’s got no wider application, what’s the point in doing it? There are
two answers: (1) researching your own practice in your own classroom contributes strong-
ly to your ongoing professional development; and (2) providing you make the context of
your research clear when you write it up (you, the nature of the class, the lesson content,
the whole school context, etc.), anyone reading your study would be able to decide the
extent to which your findings may apply to them (so-called user generalizability).
Finally, although you probably won’t need to generalize to wider populations in your own
research, you will read large-scale studies that do just that. Even if individuals have been
sampled randomly, instinct probably tells you that a study based on two individuals is less
generalizable than one based on two hundred – but why is that?
Well, if you take lots of different samples from the same population, it’s unlikely that each
will have the same mean (what most people would call the average) or standard deviation
(how much the data is spread out around the mean) for the variable you’re measuring.
However, if you use a bigger sample, the mean will be closer to the population mean;
hence, the bigger the sample, the better. If you do adopt a quantitative approach, a sample
size of 30 or more would be good.
QUANTITATIVE APPROACHES TO RESEARCH
So how do you actually generate some data? There are two key approaches: experimen-
tal (measuring the effect of some sort of intervention), and non-experimental (looking at
what’s there and trying to make sense of how different variables may affect each other).
You’ll learn how to analyse your data in the next chapter.
Experimental
This approach looks at the effect of one variable on another, by making a change in one of
the variables (the independent variable) and seeing how the other variable changes (the
dependent variable), while keeping all other variables constant (controlling
them). An experimental approach is broadly underpinned by the stages shown in Box 9.4.
• Dimensional sampling: If you suspect that a number of variables will influence
the variable you are interested in, you can deliberately choose individuals who
are subject to every combination of those variables.
• Purposive sampling: You choose which individuals will be in your sample based
on how representative you think they are of the group you want to study. It
is unwise to generalize beyond your sample as your choices are unlikely to be
fully objective.
Taking A Quantitative Approach
430
BOX 9.4
Planning an experiment
1. Identify what you’re trying to find out, and work out what you think will
happen. Predict how you are expecting the independent variable (the
treatment) to affect the dependent variable (the response).
2. A variable like ‘pupils’ learning’ cannot be measured directly, and you’ll
have to use a ‘proxy’ or indirect measure of it, such as ‘test score results’;
remember to justify your choice of ‘proxy’ as a valid indicator of the variable
you’re interested in.
3. Decide who your population is, and then randomly choose a sample of
individuals from the population.
4. If your experimental ‘treatment’ is something like ‘receives new teaching
approach’ or ‘doesn’t receive new teaching approach’, then randomly
allocate your pupils to each group. Even if your experiment involves a more
quantitative independent variable, such as the length of time spent working
on computers during a lesson, randomly allocating pupils evenly across
levels (one hour, two hours, etc.) is still essential.
5. Make sure that the levels of treatment are realistic within the context
(usually a classroom). For example, looking at how eight hours of computer
access affects pupils’ learning is unrealistic in a single lesson. Also ensure
that the range of treatments you provide will enable you to see trends and
differences. Comparing 60 minutes of computer access with 61 minutes
won’t yield any startling conclusions.
6. Identify potentially confounding variables (variables that could affect your
findings, such as variable C in Figure 11.2), and develop strategies to control
them (keep their levels constant between individuals receiving the different
levels of treatment), or eliminate them (e.g. removing a teaching assistant
from the room).
7. Pilot your methods with a different sample to iron out any difficulties.
8. After the experiment, measure the dependent variable for each individual
and use a statistical test to make a conclusion. Don’t leave it until now
though to consider which statistical tests you intend to use – it is all too
common to realize that the data you’ve collected is not compatible with
any statistical test.
9. Be careful to state the extent to which you can generalize your conclusion
across a wider population.
Taking A Quantitative Approach
431
An experimental model is a good basis for scientific research in a laboratory, but employ-
ing this approach in a classroom, with the multiplicity of variables in existence, and the
constraints of school timetabling, is not always easy.
Let’s imagine you’re researching the effect of a six-week motivational training programme
with a group of Year 9 students. Rather than being constrained by the groups already set
up, you’ve randomly selected a group of students and you’re teaching them at lunchtime.
You use a questionnaire to assess their motivation beforehand. You use the same ques-
tionnaire after the six-week programme and find an increase in motivational levels. To your
delight, you conclude that the training programme has had a positive impact!
Or do you? Are you certain that you’ve controlled all other variables that may affect your
results? You may have begun your programme at the start of term, and then measured
motivation again at the end of term; perhaps you could expect children to be more moti-
vated as the end of term draws near! In fact, all sorts of other variables could be responsi-
ble for your findings. Hence, thinking about and collecting additional data to examine such
confounding variables is essential to working out what’s really going on. If you do want to
use just one group, you may find your work sits better as one cycle of an action research
approach, particularly if you were unable to sample children randomly.
Using a control group
However, if we stick with an experimental approach, how can we get rid of the effect of
these extra variables? The easiest way is to use more than one group whose members
have been chosen randomly. One group gets the training programme and one group
doesn’t.
Because you’ve chosen your groups randomly, any systematic effect of the other variables
should be spread across the groups, and will ‘confound’ your results to the same extent.
You therefore look at the effect of the training programme by comparing the increase
in motivation for the ‘trained’ group against the increase for the ‘untrained’ group. Even
though both groups may have greater motivation at the end of term, any additional effect
of the training programme should be clearer.
It’s still not necessarily simple though.
• Just doing something with your experimental group (even if you gave them a free
lunch for six weeks) may affect their motivation. Hence, leaving your control group
with no intervention at all would not be appropriate – you’ll have to consider what an
appropriate control treatment would be.
• You need to be careful of the effects of other variables ‘creeping in’. For example, if you
taught one group on Monday lunchtime and the other on Tuesday lunchtime, you’re
introducing another variable which could bias your outcomes.
• Variables can interact in unpredictable ways. For example, being given a pre-test may
actually influence the results of the post-test (children may think about their responses
between the two tests and want to ‘put the right thing’), particularly if the tests are
very similar. Comparing your results with two further groups (one control and one
experimental) which do not experience the pre-test would help to clarify the extent of
this problem.
•
Taking A Quantitative Approach
432
Identifying these problems, and collecting some supplementary data to explore them,
will add weight to your study when you write it up.
Quasi-experiments
So what happens if you cannot choose groups randomly, you cannot control variables,
etc. Well, you have to do the best you can. A ‘quasi-experiment’ is probably as good as
you’re going to get.
This approach still uses an experimental and control group, but rather than being able
to randomly choose the members of each, you should choose existing groups (to which
you have access) which are most similar on as many relevant variables as possible. This
means that if you’re looking at motivation levels, you really want two groups that have
very similar motivation levels in the first place, and a similar range of other variables that
could be important, such as prior attainment and socio-economic factors.
Rather than just looking at the overall differences between the two groups, comparing
the effect of the experiment between pairs of pupils from the experimental and control
group, matched as closely as possible on such relevant variables, is even better.
Достарыңызбен бөлісу: |