Бланка Гарсия Ореа Аро Микробы внутри нас. Как поддерживать баланс микрофлоры кишечника для идеального пищеварения и крепкого иммунитета



бет96/96
Дата27.11.2023
өлшемі7,35 Mb.
#128980
1   ...   88   89   90   91   92   93   94   95   96
Байланысты:
Aro Mikroby-vnutri-nas-Kak-podderzhivat-balans-mikroflory-kishechnika-dlya-ideal

Способ приготовления:
1. Тщательно вымойте кабачок, высушите и натрите вместе с кожицей.
2. Хорошо отожмите, чтобы стекла вся жидкость.
3. Положите кабачок в миску и добавьте яйцо, специи по вкусу и хорошенько перемешайте смесь.
4. Разогрейте духовку до 200 °C. Постелите на противень пергаментную бумагу, выложите смесь тонким слоем.
5. Поставьте противень в духовку и выпекайте 20–25 минут или пока тесто не подрумянится.
6. Выньте противень из духовки и положите поверх теста начинку. Заверните его рулетиком и поставьте еще раз в духовку примерно на 10 минут при той же температуре, чтобы рулет подрумянился.
Заключение

Из этой книги мы узнали, что кишечная микробиота может меняться. Все мы не раз слышали, что человек рождается с определенным наборов генов, от которых зависит его судьба, однако теперь мы знаем, что даже если генетический код неблагоприятен, правильный образ жизни и здоровые привычки (правильное питание, физические упражнения, адекватный отдых, отсутствие алкоголя и табака и др.) помогут, несмотря на генетическую предрасположенность, избежать некоторых заболеваний.


Кишечник постоянно посылает нам сообщения, осталось лишь их услышать. Если после прочтения этой книги мне не удалось убедить вас в том, что цель диеты состоит не в похудении, а в улучшении здоровья, то я, видимо, занимаюсь не тем делом и мне придется выбрать что_то другое.


Список литературы

Ishikawa, T.; Fukui, A.; Kashiwagi, S.; Uchiyama, K.; Handa, O.; Naito, Y.; Itoh, Y.; Katada, K.; Nakano, T.; Mizushima, K.; et al. Mucosa_Associated Microbiota in the Gastrointestinal Tract of Healthy Japanese Subjects. Digestion 2019, 1–14.2.


Richard, M.L.; Sokol, H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 2019.3.
De Sordi, L.; Lourenço, M.; Debarbieux, L. The Battle Within: Interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host Microbe 2019.4.
Voreades, N.; Kozil, A.; Weir, T.L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 2014, 5.5.
Corning, Brooke Copland, Andrew P. Frye, J.W. The microbiome in health and disease. Curr. Gastroenterol. Rep. 2018, 20, 39.
Cascales Angosto, M., Doadrio Villarejo, A.L. Fisiología del aparato digestivo. 12–27.
Gimeno Creus, E. Alimentos prebióticos y probióticos. La polémica científica sobre sus beneficios. Rev Offarm 2004; 23(5): 90–98.
Krasinski, S.D., et cols. Fundic atrophic gastritis in an elderly population. Effect on hemoglobin and several serum nutritional indicators. J Am Geriatr Soc 1986; 34(11): 800–806.
McColl, K.E., Gillen, D. Evidence that proton_pump inhibitor therapy induces the symptoms it is used to treat. Gastroenterology 2009; 137(1): 20–22.
Schubert, M.L. Gastric secretion. Curr Opin Gastroenterol 2014; 30(6): 578–582.
Spiegel, B.M., Chey, W.D., Chang, L. Bacterial overgrowth and irritable bowel syndrome: unifying hypothesis or a spurious consequence of proton pump inhibitors? Am J Gastroenterol 2008; 103(12): 2972–2976.
Yago, M.R., et cols. Gastric reacidification with betaine HCl in healthy volunteers with rabeprazole_induced hypochlorhydria. Molecular pharmaceutics 2013; 10(11): 4032–4037.
Nofrarías, M.; Martínez_Puig, D.; Pujols, J.; Majó, N.; Pérez, J.F. Long_term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 2007 Nov_Dec; 23(11_12): 861–870.
Morita, T.; Tanabe, H.; Sugiyama, K.; Kasaoka, S.; Kiriyama, S. Dietary resistant starch alters the characteristics of colonic mucosa and exerts a protective effect on trinitrobenzene sulfonic acid_induced colitis in rats. Biosci Biotechnol Biochem. 2004 Oct; 68(10): 2155–2164.
Bodinham, C.L.; Frost, G.S.; Robertson, M.D. Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr. 2010 Mar; 103(6): 917–922.
Villarroel, P.; Gómez, C.; Vera, C.; Torres, J. Almidón resistente: Características tecnológicas e intereses fisiológicos. Rev chil nutr 2018; 45(3): 271–278.

Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989; 299(6710): 1259–1260.


Okada, H.; Kuhun, C.; Feillet, H.; Bach, J.F. The «hygiene hypothesis» for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010; 160(1): 1–9.
Linch, S.V., et cols. Effects of early_life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. JACI 2014; 134(3): 593–601.
Kozyrskyj, A.L.; Ernst, P.; Becker, A.B. Increased risk of childhood asthma from antibiotic use in early life. Epub 2007; 131(6): 1753–1759.
What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019; 7(1): 14.
Castillo_Álvarez, F.; Marzo_Sola, M.E. Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. Neurología 2017; 32(3): 175–184.
Icaza_Chávez, M.E. Gut microbiota in health and disease. Rev Gastroenterol Mex 2013; 78(4): 240–248.
Houghton, D.; Stewart, CJ.; Day, CP.; Trenell, M. Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 2016; 17: 447.
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015; 7: 17–44.
Marsland, B.J. Influences of the Microbiome on the Early Origins of Allergic Asthma. Ann Am Thorac Soc. 2013; 10: S165–9.
Madan, J.C.; Koestler, D.C.; Stanton, B.A.; Davidson, L.; Moulton, L.A.; Housman, M.L.; et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio. 2012;3: e00251–12.
Nguyen, H.B.; Rivers, E.P.; Abrahamian, F.M. y cols. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med 2006; 48: 28–54.
Translocación bacteriana. Nutr. Hosp. [Internet]. 2007 Mayo [citado 2019 Ago 02]; 22 (Suppl 2): 50_55. Disponible en: http: //scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212– 16112007000500007&lng=es
Logan, A.C.; Jacka, F.N.; Prescott, S.L. Immune_microbiota interactions: Dysbiosis as a global health issue. Curr Allergy Asthma Rep. 2016; 16: 13.
Caballero, S.; Pamer, E.G. Microbiota_Mediated Inflammation and Antimicrobial Defense in the Intestine. Annu. Rev. Immunol. 2015; 33: 9.1–9.30.

García_Mazcorro, J.F., et cols. Caracterización, influencia y manipulación de la microbiota gastrointestinal en salud y enfermedad. Gastroenterol Hepatol 2015; 38(7): 445–466.


Guarner, F. Microbiota intestinal y enfermedades inflamatorias del intestino. Gastroenterol Hepatol 2011; 34(3): 147–154.
Herrero de Lucas, E., et cols. Interacciones entre el huésped y la microbiota. Medicine 2018; 12(52): 3059–3065.
Sebastián Domingo, J.J.; Sánchez Sánchez, C. De la flora intestinal al microbioma. Rev Esp Enferm Dig 2018; 110(1): 51–56.
Rinninella, E., et cols. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019; 7(1): 14.
Serrano, C.A., et cols. Desarrollo del microbioma intestinal en niños. Impacto en la salud y en la enfermedad. Rev Chil Pediatr 2016; 87(3): 151–153.
Stewart, C.J., et cols. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562 (7728): 583–588. Disponible en: http://scielo.isciii.es/ pdf/diges/v107n11/es_revision.pdf
Guarner, F., et cols. Probiotics and prebiotics. WGO Global Guidelines 2017.
Zielinska, D., et cols. Food_Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. Biomed Res Int 2018; 2018 (ID 5063185): 15 pages.
Olveira, G.; González_Molero, I. Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinol Nutr. 2016; 63(9): 482–494.
Gimeno Creus, E. Alimentos prebióticos y probióticos. Rev Offarm 2004; 23(5): 90–98.
Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim Nutr 2018; 4(2): 151–159.

Deschasaux, M.; Bouter, K.E.; Prodan, A.; Levin, E.; Groen, A.K.; Herrema, H.; Tremaroli, V.; Bakker, G.J.; Attaye, I.; Pinto_Sietsma, S.J.; Van Raalte, D.H.; Snijder, M.B.; Nicolaou, M.; Peters, R.; Sanders, M.E.; Benson, A.; Lebeer, S.; Merenstein, D.J.; Klaenhammer, T.R. Shared mechanisms among probiotic taxa: implications for general probiotic claims. Curr. Opin. Biotechnol. 2018; 49: 207–216.


Bottacini, F.; Van Sinderen, D.; Ventura, M. Omics of bifidobacteria: research and insights into their health_promoting activities. Biochem. J. 2017, 474, 4137–4152.
Zwinderman, A.H.; Bäckhed, F.; Nieuwdorp, M. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography, Nat Med. 2018; 24(10): 1526–1530
Basu, S.; Yoffe, P.; Hills, N.; Lustig, R.H. The Relationship of Sugar to Population_Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross_Sectional Data. PLoS ONE 2013; 8(2): e57873. doi:10.1371/journal. pone.0057873.
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8836–8847.
Tan, H.; Zhai, Q.; Chen, W. Investigations of Bacteroides spp. towards next_generation probiotics. Food Res. Int. 2019, 116, 637–644.
Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nat. Rev. Microbiol. 2010, 8, 171–184.
Sarkar, A.; Mandal, S. Bifidobacteria–Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol. Res. 2016, 192, 159–171.
National Institutes of Health. The Human Microbiome Project. [Internet]. [Consultado 21 Ene 2019]. Disponible en: https://hmpdacc.org/
Fontané, L., et cols. Influence of the microbiota and probiotics in obesity. Clin Investig Arterioscler 2018; 30(6): 271–279.
Icaza_Chávez, M.E. Gut microbiota in health and disease. Rev Gastroenterol Mex 2013; 78(4): 240_248.
MetaHIT Consortium. Metagenomics of the Human Intestinal Tract. [Internet]. [Consultado 26 Mar 2019]. Disponible en: http://www. metahit.eu/
Han, Y.; Wu, W.; Zheng, H.M.; Li, P.; McDonald, D.; Sheng, H.F.; Chen, M.X.; Chen, Z.H.; Ji, G.Y.; Zheng, Z.D.; Mujagond, P.; Chen, X.J.; Rong, Z.H.; Chen, P.; Lyu, L.Y.; Wang, X.; Wu, C.B.; Yu, N.; Xu, Y.J.; Yin, J.; Raes, J.; Knight, R.; Ma, W.J.; Zhou, H.W. Regional variation limits applications of healthy gut microbiome reference ranges and disease models, Nat Med. 2018; 24(10): 1532–1535.
Azpiroz, M.B.; Castro, M.S.; Ponzio, R.; Canellada, A.M.; Manghi, M.A.; Sparo, M.D.; Díaz, A.M.; Molina, M.A. Probiotic activity of Enterococcus faecalis CECT7121: effects on mucosal immunity and intestinal epithelial cells. J. Appl. Microbiol. 2016, 121, 1117–1129.
Hallen_Adams, H.E.; Suhr, M.J. Fungi in the healthy human gastrointestinal tract. Virulence 2017, 8, 352–358.
Zmora, N.; Soffer, E.; Elinav, E. Transforming medicine with the microbiome. Sci. Transl. Med. 2019, 11, eaaw1815.
Ruppé, E.; Ghozlane, A.; Tap, J.; Pons, N.; Álvarez, A._S.; Maziers, N.; Cuesta, T.; Hernando_Amado, S.; Clares, I.; Martínez, J.L., et al. Prediction of the intestinal resistome by a three_dimensional structure_based method. Nat. Microbiol. 2019, 4, 112–123.
Sanz, Y.; Romaní_Perez, M.; Benítez_Páez, A.; Portune, K.J.; Brigidi, P.; Rampelli, S.; Dinan, T.; Stanton, C.; Delzenne, N.; Blachier, F., et al. Towards microbiome_informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clin. Nutr. 2018, 37, 2191–2197.

Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 2016, 535, 75–84.2.


Takaishi, H.; Matsuki, T.; Nakazawa, A.; Takada, T.; Kado, S.; Asahara, T.; Kamada, N.; Sakuraba, A.; Yajima, T.; Higuchi, H., et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 2008, 298, 463–472.
Kim, D.; Zeng, M.Y.; Núñez, G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp. Mol. Med. 2017, 49, e339.
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8836–8847.5.
Cani, P.D.; Van Hul, M.; Everard, A.; Rastelli, M.; Lefort, C.; Depommier, C. Microbial regulation of organismal energy homeostasis. Nat. Metab. 2018, 1, 34–46.
Tuohy, K.; Thiele, I.; Rowland, I.; Gibson, G.; Scott, K.; Heinken, A.; Swann, J. Gut microbiota Dime qué comes y te diré qué bacterias tienes functions: metabolism of nutrients and other food components. Eur. J. Nutr. 2017, 57, 1–24.8.
Aron_wisnewsky, J.; Clément, K. The gut microbiome, diet , and links to cardiometabolic and chronic disorders. Nat. Publ. Gr. 2015, 12, 169–181.9.
Knauf, F.; Brewer, J.R.; Flavell, R.A. Immunity, microbiota and kidney disease. Nat. Rev. Nephrol.
Del Campo_Moreno, R.; Alarcón_Cavero, T.; D’Auria, G.; Delgado_Palacio, S.; Ferrer_Martínez, M. Microbiota en la salud humana: técnicas de caracterización y transferencia. Rev Enf Inf y Microb Clin 2018; 36(4): 207_258.
Kolodziejczyk, A.A.; Zheng, D.; Shibolet, O.; Elinav, E. The role of the microbiome in NAFLD and NASH. 2019, 1–13.
Cornejo_Pareja, I.; Muñoz_Garach, A.; Clemente_Postigo, M.; Tinahones, F.J. Importance of gut microbiota in obesity. Eur. J. Clin. Nutr. 2018.
Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Chatelier, L.; Levenez, F.; Doré, J.; Mattila, I.; Plichta, D.R., et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 1–6.

Hiippala, K., et cols. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018; 10(8): 988.31.


Icaza_Chávez, M.E. Microbiota intestinal en la salud y la enfermedad. Rev Gastroent México 2013; 78(4): 240–248.
Aranceta Bartrina, J., et cols. Guía de la alimentación saludable para atención primaria y colectivos ciudadanos. SENC. Disponible en: https://www.nature.com/ articles/nm.3145
Park, J.E.; Miller, M.; Rhyne, J.; Wang, Z.; Hazen, S.L. Differential effect of short_term popular diets on TMAO and other cardio_metabolic risk markers. Nutr Metab Cardiovasc Dis 2019; 29(5): 513–517.
Álvarez, J. Fibra alimentaria. Fundación para la Diabetes. Disponible en: https://www.fundaciondiabetes.org/infantil/204/fibra_alimentaria
Gimeno Creus, E. Alimentos prebióticos y probióticos. Rev Offarm 2004; 23(5): 90–98.
Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods 2017; 33: 194–201.
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. A review of the efficacy of dietary polyphenols un experimental modelos of inflammatory bowel diseases. Food Funct 2015; 6: 1773.
Woting, A.; Blaut, M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016; 8(4): 202.
David, L.A.; Maurice, C.F.; Carmody, R.N., et cols. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563.
Le Chatelier, E.; Nielsen, T.; Qin, J., et cols. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–546.
Wu, G.D.; Chen, J.; Hoffmann, C., et al. Linking long_term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105–108.
Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J Obes 2016; 2016: 7353642.
Duncan, S.H.; Hold, G.L.; Harmsen, H.J.; Stewart, C.S.; Flint, H.J. (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and aproposal to reclassify it as Faecalibacterium prausnitziigen. nov., comb. nov. Int J Syst Evol Microbiol 52: 2141–2146.
Derrien, M.; Van Baarlen, P.; Hooiveld, G., et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin_degrader Akkermansia muciniphila. Front Microbiol 2011 Aug 1; 2: 166.
Everard, A.; Belzer, C.; Geurts, L., et al. Cross_talk between Akkermansia muciniphila and intestinal epithelium controls diet_induced obesity. Proc Natl Acad Sci USA 2013; 110: 9066–9071.
Derrien, M.; Collado, M. C.; Ben_Amor, K.; Salminen, S.; de Vos, W. M. (2007). «The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract». Applied and Environmental Microbiology. 74 (5): 1646–1648.
Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C., et al. (2000). Phylogenetic relationships of butyrate_producing bacteria from the human gut. Appl Environ Microbiol 66: 1654–1661.

Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut_brain axis: Regulation by the microbiome. Neurobiol Stress. 2017; 7: 124–136.


Rieder, R.; Wisniewski, P.J.; Alderman, B.L.; Campbell, S.C. Microbes and mental health: A review. Brain Behav Immun. 2017 Nov; 66: 9–17.
Bambury, A.; Sandhu, K.; Cryan, J.F.; Dinan, T.G. Finding the needle in the haystack: systematic identification of psychobiotics. Br. J. Pharmacol. 2018, 175, 4430–4438.
Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017 Feb 16; 20(2): 145–155.
Obata, Y.; Pachnis, V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology. 2016 Nov 1; 151(5): 836–844.
Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012 Nov 24; 10(11): 735–742.
Wang, H.X.; Wang, Y.P. Gut microbiota_brain axis. Vol. 129, Chinese Medical Journal. Chinese Medical Association; 2016. 2373–2380.
Takanaga, H.; Ohtsuki, S.; Hosoya, K.I.; Terasaki, T. GAT2/BGT_1 as a system responsible for the transport of gamma_aminobutyric acid at the mouse blood_brain barrier. J Cereb Blood Flow Metab 2001; 21: 1232–1239.
Alcock, J.R.; Maley, C.C.; Aktipis, C.A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays. 2014, 36(10): 940–999.
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L., et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. CellPress. 2015; 161: 264–276.

Kwa, M.; Plottel, C.S.; Blaser, M.J.; Adams, S. The intestinal Microbiome and Estrogen Receptor_Positive Female Breast Cancer. J Natl Cancer Inst 2016; 108(8): djw029.


Baker, J.M.; Al_Nakkash, L.; Herbst_Kralovetz, H.H. Estrogen_gut microbiome axis: Physiological and clinical implications. Maturitas 2017; 103: 45–53.
Sirisinha, S. The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pac J Allergy Immunol 2016; 34(4): 249–264.
Zhang, D.M.; Jiao, R.Q.; Kong, L.D. High Dietary Fructose: Direct o Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients. 2017 Mar 29; 9 (4). PubMed PMID: 28353649.
Page, K.A.; Chan, O.; Arora, J.; Belfort_Deaguiar, R.; Dzuria, J.; Roehmholdt, B., et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with apetite and reward pathways, JAMA. 2013 Jan 2; 309(1): 63_70. PubMed PMID: 23280226.
Fox, J.G.; Lu, K.; Mahbub, R. «Xenobiotics: Interaction with the Intestinal Microflora», https://www.ncbi.nlm.nih.gov/pubmed/ 26323631.
Haiser, H. J.; Maurice, C. F.; Turnbaugh, P. J. «Xenobiotics shape the physiology and gene expression of the active human gut microbiome»,
Snow, R.C.; Barbieri, R.L.; Frisch, R.E. «Estrogen 2_hydroxylase oxidation and menstrual function among elite oarswomen», https://www.ncbi.nlm.nih.gov/pubmed/2753980
Zhu, B.T.; Conney, A.H. «Functional role of estrogen metabolism in target cells: review and perspectives», Zhu, B.T.; Han, G.Z.; Shim, J.Y.; Wen, Y.; Jiang, X.R. «Quantitative structure_activity relationship of various endogenous estrogen metabolites for human estrogen receptor a and ß subtypes: Insights into the structural determinants favoring a differential subtype binding», https://www.ncbi.nlm.nih.gov/pubmed/16728493
The biological evaluation of depression severity: a novel method for the determination of platelet serotonin concentration. Bezrukov MV1, Shilov IE, Shestakova NV, Kliushnik TP. Zh Nevrol Psikhiatr Im S S Korsakova. 2014; 114 (8): 51–57.
The role of estrogen in mood disorders in women. Payne JL. Int Rev Psychiatry. 2003; 15 (3): 280–290.
Menstrual cycle and appetite control: implications for weight regulation. Dye, L.; Blundell, J.E. Human Reproduction vol. 12, n.° 6, 1142–1151, 1997. https://www.researchgate.net/publication/13997586_Menstrual_cycle_and_appetite_control_Implications_for_weight_regulation
Menstrual cycle and voluntary food intake in young Chinese women. Li ET1, Tsang, L.B.; Lui, S.S. 1999 Aug; 33(1): 109_18. https://www.ncbi. nlm.nih.gov/pubmed/10447983?dopt=Abstract&holding=npg ¿

Síntomas del estreñimiento. FEAD. Disponible en: https://www.saludigestivo.es/wp_content/ uploads/2016/03/sintomas_del_estrenimiento_20141101134801.pdf


Información para pacientes: estreñimiento. Sociedad Catalana de Digestología. Disponible en: http://www.scdigestologia.org/docs/ patologies/es/restrenyiment_es.pdf
LeBlond, R.F.; et al., eds. The abdomen, perineum, anus, and rectosigmoid. In: DeGowin’s Diagnostic Examination. 10th ed. New York, N.Y.: McGraw_Hill Education; 2015. http:// www.accessmedicine.com.
Feldman, M., et al. Gastrointestinal bleeding. In: Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. 10th ed. Philadelphia, Pa.: Saunders Elsevier; 2016. http://www.clinicalkey.com
Villar del Fresno, A.M.; Carretero Accame, M.E. Semillas de Plantago. Rev Farmacia Profesional 2004; 18(2): 64_69. Escala de Bristol. Disponible en: http://www. agapap.org/druagapap/system/files/ BRISTOL_Escala.pdf
Lewis, S.J.; Heaton, K.W. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 1997; 32(9): 920_924.
García_Mazcorro, J.F., et al. Caracterización, influencia y manipulación de la microbiota gastrointestinal en salud y enfermedad. Gastroenterol Hepatol 2015; 38(7): 445–466.

Hooper, L.V., et cols. Interactions between the microbiota and the immune system. Science 2012; 336(6086): 1268–1273.


Opazo, C.M., et cols. Intestinal Microbiota Influences Non_intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9: 432.
Microbiota Influences Non_intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9: 432.
Icaza_Chávez, M.E. Gut microbiota in health and disease. Rev Gastroenterol Mex. 2013; 78(4): 240–248.
Del Campo_Moreno, R., et al. Microbiota en la salud humana: técnicas de caracterización y transferencia. Enferm Infecc Microbiol Clin. 2018; 36(4): 241–245.
Cani, P.D. Human gut microbiome: hopes, threats and promises. Gut 2018; 67: 1716–1725.
DeGruttola, A.K., et al. Current understanding of dysbiosis in disease in human and animal models. In amm Bowel Dis. 2016; 22: 1137–1150.
Hooper, L.V., et al. Interactions between the microbiota and the immune system. Science 2012; 336(6086): 1268–1273.
Castillo_Álvarez, F.; Marzo_Sola, M.E. Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. Neurología 2017; 32(3): 175–184.
Chimenos_Küstner, E., et al. Disbiosis como factor determinante de enfermedad oral y sistémica: importancia del microbioma. Med Clin (Barc). 2017. http://dx.doi.org/10.1016/j. medcli.2017.05.036
Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M., et al. The oral microbiome–An update for oral healthcare professionals. Br Dent J. 2016; 221: 657–666.

Salvo_Romero, E.; et cols. Función barrera intestinal y su implicación en enfermedades digestivas. Rev Esp Enferm Dig 2015; 107: 686–696.


Sánchez de Medina, F.; et cols. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 2014; 20: 2394–2404.
Vancamelbeke, M., Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Rev Gastroenterol Hepatol 2017; 11(9): 821: 834.
Luissint, A._C., et al. Inflammation and the intestinal barrier: leukocyte_epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 2016; 151: 616–632.
Pascual, S.; Martínez, J.; Pérez_Mateo, M. La barrera intestinal: trastornos funcionales en enfermedades digestivas y extradigestivas. Gastroenterol Hepatol 2001; 24: 256–267.
Bischoff, S.C., et cols. Intestinal permeability: a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
Martini, E., et cols. The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2017; 4: 33–46.
Camilleri, M., et cols. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24(6): 503–512.

The Monash University Low FODMAP Diet. Disponible en: http://www.med.monash.edu/ cecs/gastro/fodmap/description.html


World J Gastroenterol. 2015 Jan 14; 21(2): 600_608. doi: 10.3748/wjg.v21.i2.600. Intervention to increase physical activity in irritable bowel syndrome shows long_term positive effects http://www.med.monash.edu/cecs/ gastro/fodmap/
Rao, S.S.C.; Yu, S.; Fedewa, A. Systematic review: dietary fibre and FODMAP_restricted diet in the management of constipation and irritable bowel syndrome. Aliment Pharmacol Ther. 2015; 41(12): 1256–1270.
Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. J Gastro. 2014 Jan; 146(1): 67–75.e5.
Zugasti Murillo, A.; Estremera Arévalo, F.; Petrina Jáuregui, E. Dieta pobre en FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) en el síndrome de intestino irritable: indicación y forma de elaboración. Rev Endocrinología y Nutrición 2016; 63(3): 132–138.
Harvard Health Publishing. Try a FODMAPs diet to manage irritable bowel syndrome. Disponible en: http://www.health.harvard.edu/ diet_and_weight_loss/a_new_diet_to_manage_irritable_bowel_syndrome
Halmos, E.P.; Christophersen, C.T.; Bird, A.R., et al. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64: 93–100.
Mansueto, P.; Seidita, A.; D’Alcamo, A et al. Role of FODMAPs in Patients With Irritable Bowel Syndrome A Review. Nutr Clin Pract. 2015.
Böhn, L.; Störsrud, S.; Liljebo, T., et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology. 2015; 149(6): 1399–1407.
Martin, L.; Van Vuuren, C.; Seamark, L., et al. Long term effectiveness of short chain fermentable carbohydrate (FODMAP) restriction in patients with irritable bowel syndrome. Gut. 2015; 64(1): A51_A52.
Iacovou, M.; Tan, V.; Muir, J.G.; Gibson, P.R. The Low FODMAP Diet and Its Application in East and Southeast Asia. J Neurogastroenterol Motil. 2015; 21(4): 459–470.
Yoon, S.R.; Lee, J.H.; Lee, J.H., et al. Low_FODMAP formula improves diarrhea and nutritional status in hospitalized patients receiving enteral nutrition: a randomized, multicenter, double_blind clinical trial. Nutrition Journal. 2015; 14(1): 1_1.
Gibson, P.R.; Muir, J.G.; Newnham, E.D. Other dietary confounders: FODMAPS et al. Dig Dis. 2015; 33(2): 269–276.

Hayes, P.A., et cols. Irritable bowel syndrome: the role of food in pathogenesis and management. Gastroenterol Hepatol 2014; 10(3): 164–174.


Lee, B.J.; Bak, Y.T. Irritable bowel syndrome, gut microbiota and probiotis. J Neurogastroenterol Motil 2011; 17(3): 252–266.
Mearin, F. Diagnóstico del síndrome del intestino irritable: criterios clínicos y biomarcadores. Elsevier: 2016; (8): 121–133.
Mearin, F., et cols. Guía de práctica clínica del síndrome del intestino irritable con estreñimiento y estreñimiento funcional en adultos: tratamiento (Parte 2 de 2). Rev Atención Primaria 2017; 49(3): 177–194.
Zugasti Murillo, A. Intolerancia alimentaria. Rev Endocrinología y Nutrición 2009; 56(5): 241–250.
Fedewa, A.; Rao, S.S. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep, v. 16, n.° 1, 370, Jan 2014. ISSN 1522_8037.
Shepherd, S.J.; Gibson, P.R. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc, v. 106, n.° 10, 1631_1639, Oct 2006. ISSN 0002_8223 (Print) 0002_8223.
Skoog, S.M.; Bharucha, A.E. Dietary fructose and gastrointestinal symptoms: a review. Am J Gastroenterol, v. 99, n.° 10, 2046_2050, Oct 2004. ISSN 0002_9270 (Print) 0002_9270.
Varney, J., et al. FODMAPs: food composition, defining cutoff values and international application. J Gastroenterol Hepatol, v. 32, Suppl 1, 53_61, Mar 2017. ISSN 0815_9319.
Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self_reported intolerance to traditional cows’ milk. Nutr J. 2016 Apr 2; 15: 35.
Bartley, J.; McGlashan, S.R. Does milk increase mucus production? Med Hypotheses. 2010 Apr; 74(4): 732–734.
Trivedi, M.S.; Shah, J.S.; Al_Mughairy, S.; Hodgson, N.W.; Simms, B.; Trooskens, G.A.; Van Criekinge, W.; Deth, R.C. Food_derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem. 2014 Oct; 25(10): 1011.
Brooke_Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 ß_Casein. Adv Nutr 2017; 8(5): 739–748.
Zugasti Murillo, A. Intolerancia alimentaria. Rev Endocrinología y Nutrición 2009; 56(5): 241–250.
Sensibilidad al gluten no celiaca. FACE 2016. Disponible en: https://celiacos.org/sensibilidad_al_gluten_no_celiaca/
Molina_Infante, J.; Santolaria, S.; Montoro, M.; Esteve, M.; Fernández_Bañares, F. Sensibilidad al gluten no celiaca: una revisión crítica de la evidencia actual. Rev Gatroent y Hepatol 2014; 37(6): 362–371.
Biesiekierski, J.R. No effects of gluten in patients with self_reported non_celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short_chain carbohydrates. Gastroenterology 2013; 145(2): 320–328.
Reig_Otero, Y.; Mañes, J.; Manyes i Font, L. Sensibilidad al gluten no celiaca (SGNC): manejo nutricional de la enfermedad. Nutr Clin Diet Hosp 2017; 37(1): 171–182.
Miazga, A.; Osiński, M.; Cichy, W.; Żaba, R. Current views on the etiopathogenesis, clinical manifestation, diagnostics, treatment and correlation with other nosological entities of SIBO. Adv Med Sci 2015; 60(1): 118–124.
Chedid, V., et cols. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob Adv Health Med 2014; 3(3): 16–24.
Quigley, E.M. Small intestinal bacterial overgrowth: what it is and what it is not. Curr Opin Gastroenterol 2014; 30(2): 141–146.
Gibson, P.R.; Shepherd, S.J. Evidence based dietary management of functional gastrointestinal symptoms: The FODMAP approach. Journal of gastroenterology and hepatology 2012; 25(2): 252–258.
Rahimi, R.; Nikfar, S.; Abdollahi, M. Induction of clinical response and remission of inflammatory bowel disease by use of herbal medicines: a meta_analysis. World J Gastroenterol 2013; 19(34): 5738–5749.
Lauritano, E.C. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am J Gastroenterol 2008; 103(8): 2031_2035.
Zhong, C.; Qu, C.; Wang, B.; Liang, S.; Zeng, B. Probiotics for Preventing and Treating Small Intestinal Bacterial Overgrowth: A Meta_Analysis and Systematic Review of Current Evidence. J Clin Gastroenterol 2017; 51(4): 300–311.

Bento, C., et cols. Mammalian Autophagy, how does it work? Annual Review of Biochemistry 2016; 85: 685_713.93.


Horne Benjamín, D., et cols. Health ffects of intermittent fasting: hormesis or harm? A systematic review. The American Journal of Clinical Nutrition 2015; 102: 464–470.
Pimentel, M., et cols. Lower Frequency of MMC Is Found in IBS Subjects with Abnormal Lactulose Breath Test, Suggesting Bacterial Overgrowth. Dig Dis Sci 2002; 47: 2639.
Choi, J. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin_like conjugation systems of autophagy. Immunity 2014; 40(6): 924–935.
Sciarretta, S.; Boppana, V.S.; Umapathi, M.; Frati, G.; Sadoshima, J. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc Diagn Ther 2015; 5(5): 394–402.
Horne, B.D. Randomized cross_over trial of short_term water_only fasting: metabolic and cardiovascular consequences. Nutr Metab Cardiovasc Dis 2013; 23(11): 1050–1057.
Varady, K.A. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev 2011; 12(7): 593–601.
Varady, K.A.; Bhutani, S.; Church, E.C.; Klempel, M.C. Short_term modified alternate_day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr 2009; 90(5): 1138–1143.
Aksungar, F.B.; Topkaya, A.E.; Akyildiz, M. Interleukin_6, C_reactive protein and biochemical parameters during prolonged intermittent fasting. Ann Nutr Metab 2007; 51(1): 88–95.
Teng, N.I., et cols. Efficacy of fasting calorie restriction on quality of life among aging men. Physiol Behav 2011; 104(5): 1059–1064.
Ohkawara, K.; Cornier, M.A.; Kohrt, W.M.; Melanson, E.L. Effects of increased meal frequency on fat oxidation and perceived hunger. Rev Obesity 2013; 21(2): 336–343.

Endocrin Society 2018. Consuming low_calorie sweeteners may predispose overweight individuals to diabetes. Disponible en: https://www.endocrine. org/news_and_advocacy/news_room/2018/consuming_lowcalorie_sweeteners_may_predispose_overweight_individuals_to_diabetes


Lofvenborg, J.E., et cols. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. European J of Endocrinol 2016; 175(6): 605–614.
BMJ 2013. Dietary sugars and body weight: systematic review and meta_analyses of randomised controlled trials and cohort studies. Recuperado de: https://www.bmj. com/content/346/bmj.e7492?fbclid=IwAR1sBHKeAXRScS_kl4XaVUOcI8WHsBd27BNN2bIscWFaMTyTkPdnvAs_IzU
Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015 Apr; 4(2): 109–116.
Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: systematic review and meta_analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014 Jul; 100(1): 65–79.
Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014 Apr; 174(4): 516_524
Vos, M.B., et cols. Added Sugars and Cardiovascular Disease Risk in Children. Circulation. 2017 May 9; 135(19): e1017–e1034.
Hu, F.B.; Malik, V.S. Sugar_sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010 Apr 26; 100(1): 47–54.
Moynihan, P.J.; Kelly, S.A. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res. 2014 Jan; 93(1): 8–18.
Gao, Y., et cols. Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab. 2017 Aug; 6(8): 897–908.
Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008; 32(1): 20–39.

AECOSAN. Recomendaciones de consumo de pescado por presencia de mercurio (2019) Recuperado de: http://www.aecosan.msssi. gob.es/AECOSAN/docs/documentos/publicaciones/seguridad_alimentaria/RECOMENDACIONES_consumo_pescado_MERCURIO_AESAN_WEB.PDF


Diario oficial de la Unión Europea. Decisión (UE) 2019/639 del Consejo. Recuperado de: https://eur_lex.europa.eu/legal_content/ES/ TXT/PDF/?uri=CELEX:32019D0639&from=EN
AECOSAN. ANISAKIASIS (2018). Recuperado de: http://www.aecosan.msssi.gob.es/ AECOSAN/web/seguridad_alimentaria/ subdetalle/anisakis.htm
Aranceta Bartrina, J., et cols. Guía de la alimentación saludable para atención primaria y colectivos ciudadanos. SENC. Disponible en: https://www.nature.com/ articles/nm.3145
Wang, M.X.; Wong, C.H.; Kim, J.E. Impact of whole egg intake on blood pressure, lipids and lipoproteins in middle_aged and older population: A systematic review and meta_analysis of randomized controlled trials. Volume 29, Issue 7, July 2019, Pages 653_664.
The American Journal of Clinical Nutrition, Volume 107, Issue 6, June 2018, Pages 853–854. Goodbye to the egg_white omelet_welcome back to the whole_egg omelet. Disponible en: https://academic.oup.com/ajcn/article /107/6/853/5032667
Richard, C.; Cristall, L.; Fleming, E.; Lewis, E.D.; Ricupero, M.; Jacobs, R.L.; Field, C.J. Impact of Egg Consumption on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes and at Risk for Developing Diabetes: A Systematic Review of Randomized Nutritional Intervention Studies. Can J Diabetes. 2017 Aug; 41(4): 453_463.
Assunção, M.L.; Ferreira, H.S.; dos Santos, A.F.; Cabral, C.R Jr.; Florêncio, T.M. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids. 2009 Jul; 44(7): 593_601.
Xue, C.; Liu, Y.; Wang, J.; Zhang, R.; Zhang, Y.; Zhang, J.; Zhang, Y.; Zheng, Z.; Yu, X.; Jing, H.; Nosaka, N.; Arai, C.; Kasai, M.; Aoyama, T.; Wu, J. Consumption of medium– and long_chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur J Clin Nutr. 2009 Jul; 63(7): 879_886.
Liu, Y.M. Medium_chain triglyceride (MCT) ketogenic therapy. Epilepsia. 2008 Nov; 49 Suppl 8: 33_6.
St_Onge, M.P.; Jones, P.J. Greater rise in fat oxidation with medium_chain triglyceride consumption relative to long_chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes Relat Metab Disord. 2003 Dec; 27(12): 1565_1571.
Indian Journal of Clinical Biochemistry 2000. Lipid peroxidation in culinary oils subjected to thermal stress. Disponible en: https://link. springer.com/article/10.1007%2FBF02873539
Ruzin, A.; Novick, R.P. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bacteriol. 2000 May; 182(9): 2668–2671.
Redondo_Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. Volume 66, March 2018, 221–229.
Journal of the American Oil Chemists’ Society 2015. The Properties of Lauric Acid and Their Significance in Coconut Oil. Disponible en: https://link.springer.com/article/10.1007/s11746– 014_2562_7
Nutrition and metabolism. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. Disponible en: https:// bmjopen.bmj.com/content/8/3/e020167
American Society for Nutritional Sciences. Physiological Effects of Medium_Chain Triglycerides: PotentialAgents in the Prevention of Obesity.

Nelson, D.L.; Cox, M.M. (2014) Lehninger. Principios de Bioquímica. Ediciones Omega. European Chemicals Agency (2017)


Bisfenol A. Recuperado de: https://echa.europa.eu/es/ hot_topics/bisphenol_a European Food Safety Authority (EFSA) (2017)
Plan BPA listo para la nueva evaluación EFSA en 2018. Recuperado de: http://www.efsa. europa.eu/en/press/news/bpa_plan_readynew_efsa_assessment_2018
Herrero Carcedo, C. (2018) Disruptores endocrinos. Independently published.



1 Сам по себе овес глютена не содержит, однако чаще всего в него попадают зерна злаковых, содержащих глютен, поэтому следует выбирать овес, на котором обозначено, что он не содержит глютен.




Достарыңызбен бөлісу:
1   ...   88   89   90   91   92   93   94   95   96




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет