Анықтама.Функция өсімшесінің аргумент өсімшесіне қатынасының аргумент өсімшесі нолге ұмтылған кездегі шегі функция туындысы деп аталады. Әдетте оны немесе деп белгілейді: (1)
Функцияның туындысын алуды – функцияны дифференциалдау дейді.
(а;в) интервалының әрбір нүктесінде туындысы бар функцияны сол интервалда дифференциалданады дейді.
Мынадай тұжырым дұрыс болады: Егер f(x) функцисы х0 нүктеде дифференциалданса, онда функция х0 нүктеде үзіліссіз болады. Бірақ осыған кері тұжырым дұрыс бола бермейді. Мысалы, y=|x| функциясы x=0 нүктеде үзіліссіз. Бірақ оның x=0 нүктедегі туындысы болмайды. Шынында да, егер бар болса, туындыны мына формуламен табар едік:
.
Ал x=0 нүктеде
болғандықтан қатынастың шегі болмайды. Шек болмаса туындысы да жоқ.
Туындының геометриялық мағнасы.y=f(x) функциясы
х0нүктесінде дифференциал- дансын. Осы функцияның қатынасы бұрыштың тангенсіне тең. жағдайда
.
жағдайда М0М қима функция графигіне х0 нүктесінде жүргізілген жанамаға айналады. Ал tg жанаманың (түзудің) бұрыштық коэффициенті, яғни
k= tg.
Сонымен, туындының геометриялық мағнасы: туынды дегеніміз y=f(x) функция графигіне х0 нүктесінде жүргізілген жанаманың бұрыштық коэффициенті:
k= tg= (2)
Сонда y=f(x) функция графигіне х0 нүктесінде жүргізілген жанама теңдеуі мынадай түрде жазылады: