ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН
ӘЛ-ФАРАБИ АТЫНДАҒЫ ҚАЗАҚ ҰЛТТЫҚ УНИВЕРСИТЕТІ
КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ
БИОЛОГИЯ ФАКУЛЬТЕТІ
БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ
әл-Фараби атындағы ҚазҰУ 75-жылдығына арналған
жас ғалымдар және студенттердің «Ғылым әлемі»
IІI Халықаралық конгресі
IІI Международный конгресс студентов
и молодых ученых
«Мир науки», посвященный 75-летию
КазНУ им. аль-Фараби
75 лет
Алматы, 28-30 сәуір 2009 ж
УДК 575
ББК 28,0
А 43
Редакционная коллегия:
д.б.н., профессор, декан биологического факультета КазНУ им. аль-Фараби
Шалахметова Т.М., д.б.н., профессор Бигалиев А.Б., д.б.н., профессор Нуртазин
С.Т., д.б.н., профессор Тулеуханов С.Т., д.б.н., профессор Мухитдинов Н.М.,
д.б.н., профессор Иващенко А.Т., д.б.н., профессор Айдосова С.С., д.б.н.,
профессор Айташева З.Г., д.б.н., профессор Шулембаева К.К., доцент
Олжабекова К.Б., доцент Есжанов Б.Е., доцент Турашева С. К., доцент
Колумбаева С.Ж., доцент Шимшиков Б.Е., Шарипова М. А., председатель
СМУ Баубекова А.С., председатель Совета НИРС Байдильдаева Г.К.,
Кистаубаева А.С., Кабдулина А.А.
III-ий Международный конгресс студентов и молодых ученых “Мир Науки”,
посвященный 75-летию КазНУ им. Аль-Фараби (28-30 апреля 2009 г., г.
Алматы): Материалы III-го Международного конгресса студентов и молодых
ученых “Мир Науки”. – Алматы: Казахский Национальный университет им.
аль-Фараби, 2009. – 230 c.
ISBN - №9965-30-760-1
1901000000
00(05)-07
© Казахский Национальный университет им. аль-Фараби, 2009
А
ПРИВЕТСТВЕННОЕ СЛОВО К
УЧАСТНИКАМ КОНГРЕССА
Биологический факультет Казахского национального университета им. аль-
Фараби является одним из старейших в университете. В этом году факультету,
как и самому университету исполняется 75 лет. Этой юбилейной дате Совет
молодых ученых и Совет НИРС факультета посвящает традиционный
ежегодный Международный конгресс студентов и молодых ученых «Мир
науки».
Биологический факультет, будучи одним из первых факультетов в
университете, по праву занимает ведущее место в подготовке кадров и вносит
весьма значительный вклад в развитие биологической науки в Республике.
На факультете работали крупные ученые биологи, с чьими именами
связаны развитие многих направлений отечественной биологии. В разное
время, в стенах нашего факультета работали академик АН СССР В.А. Догель,
академики АН КазССР А.П. Полосухин, Б.А. Домбровский, Н.П. Павлов, Т.Б.
Дарканбаев, Г.З. Бияшев, М.А. Айтхожин, члены-корреспонденты АН РК Н.Л.
Удольская, Т.М. Масенов, профессора М.Ф. Авазбакиева, Н.З. Хусаинова, В.И.
Фурсор, В.С. Корнилова, В.В. Шевченко, В.П. Митрофанов, И.О. Байтулин и
многие другие.
И в наши дни на факультете работают видные ученые, возглавляющие
ведущие направления современной биологии и работающие на самом
передовом крае науки.
Практически в любом академическом или отраслевом научно-
исследовательском институте, работающего по биологическому или смежному
с ним профилю, а также во многих ВУЗах Республики можно встретить наших
выпускников, которые вносят достойный вклад в развитие науки Казахстана и
подготовку кадров. Многие выпускники работают в научных учреждениях
ближнего и дальнего зарубежья. К примеру, Мурат Сапарбаев, Илья Дигель –
заведуют лабораториями во Франции и Германии, Архат Абжалов – профессор
Гарвардского университета. Всех выпускников, работающих в лучших
лабораториях мира, перечислить невозможно.
В работе конгресса, кроме докладов молодых ученых из нашей
республики, будут представлены доклады студентов и аспирантов из других
городов ближнего зарубежья (Россия, Узбекистан, Германия, Чехия и др.).
Желаю всем молодым ученым – участникам конгресса, новых научных
открытий в выбранных Вами направлениях и больших творческих успехов.
Декан биологического факультета
КазНУ им. аль-Фараби,
профессор Т.М. Шалахметова
ПЛЕНАРНЫЕ ДОКЛАДЫ
БИОЭТИКА И НОВОЕ ПОКОЛЕНИЕ БИОЛОГОВ:
ОТ ЗНАНИЯ К МУДРОСТИ
Рахимбаев И.
Институт биологии и биотехнологии растений, МОН РК
г. Алматы, Казахстан,
gen
_ dana
@
mail
. ru
Биоэтика изучает моральные, юридические и социальные проблемы,
возникающие в процессе развития биологии и ее прикладных направлений
(медицина, сельское хозяйство, охрана окружающей среды, биотехнология и
генная инженерия).
Ван Ранселер Поттер – основоположник биоэтики, называет ее Наукой
выживания. В своей книге «Биоэтика: мост в будущее» (1970 г.), он пишет:
«Выживание человека может зависеть от этики, основанной на знании
биологии, а, следовательно, на знании Биоэтики. Наука выживания должна
быть не просто наукой, а новой мудростью, которая объединила бы два
наиболее важных и крайне необходимых элемента – биологическое знание и
общечеловеческие ценности. Исходя из этого, я предлагаю для ее обозначения
новый термин – «Биоэтика».
Биология в процессе своего многовекового развития достигла
впечатляющих успехов в познании тайн жизни на биосферном, видовом,
организменном, клеточном и молекулярном уровнях организации. Однако
предыдущим поколением ученых не всегда удавалось использовать
колоссальный объем добытых знаний во благо человека и других живых
существ, обитающих на планете Земля. Применение научных достижений
довольно часто наносило и сейчас наносит огромный вред обществу и природе
(пестициды и другие химические загрязнители с мутагенным и канцерогенным
эффектом, генетические последствия испытания ядерного оружия, сужение
биоразнообразия из-за вытеснения «бесполезных» видов и др.). В обществе
начинает формироваться недоверчивое отношение к науке вообще и, особенно,
к биологии в силу ее прямого касательства к человеческой личности. Очевидно,
этим и вызван так называемый «феномен опасного знания». Ярким примером
тому являются достижения молекулярной и клеточной биологии, на основе
которых разработаны генно-инженерные и клеточные технологии, которые
могут служить как во благо, так и во вред.
Новое поколение биологов сталкивается с острой проблемой
непредсказуемости последствий практического применения достижений
современной биологии. Как решить эту поистине жизненно важную проблему?
Ведь знание само по себе не бывает ни полезным, ни опасным. Выгодным или
вредным может быть только результат применения знания в виде технологии,
процесса или продукта. Для разумного решения проблемы «добра и зла»
недостаточно только лишь знания. Необходима мудрость, понимаемая как
«знание того, как правильно использовать знания».
Постижение такой мудрости возможно на основе биоэтики. Соблюдение
биоэтических принципов существенно для нахождения разумных, подлинно
гуманистических решений и действий. Необходимо полностью отказаться от
антропоцентризма, то есть сугубо прагматической позиции хищнической
эксплуатации природных ресурсов.
Современный биолог должен учитывать морально-этические ценности,
признавать ответственность человека по отношению к другим формам жизни в
биосфере, принимать все возможные меры для защиты интересов как
нынешних, так и будущих поколений. Новому поколению биологов следует
овладевать не только биологическими, но и гуманитарными знаниями,
формирующими биоэтическое мировоззрение.
THE SPHEROSOME AS UNIQUE SOURCE FOR THE INNOVATION
TECHNOLOGIES
Murat K. Gilmanov
M.A. Aytkhozhins Institute of molecular biology and biochemistry, 86,
Dosmukhamedov str. 050012, Almaty, Republic of Kazakhstan
baltakay
@mail.ru
Scientific discoveries open way for development of innovation technologies. We
would like to present how our scientific investigation lead to the development of
innovation technologies. In our Laboratory of enzyme structure and regulation of
Aytkhozhin’s Institute of molecular biology and biochemistry of the Republic of
Kazakhstan first was developed the original of purification of plant subcellular
organelle – spherosome.
Whyle the active biochemical processes take place in maturing ears of the
cereals we decided to isolate active sperosomes from filling grains of wheat
( Triticum aestivum) Steklovidnaya-24 cultivar. For purification of active
nanocomplex from filling seeds of wheat for the first time we have used the
nanostructured carbon sorbent which was developed by supervisor professor Z.A.
Mansurov in Combustion problem Institute of Al-Farabi Kazakh National University.
This carbon sorbent contains carbon nanostructured elements which provide rigid
carcass of the sorbent. Using this sorbent allows us to purify sperosomes which is 2-3
times faster and which has 4-5 times higher activity than by Sepharose 4B column
chromatography. Then supernatant was purified by chromatography on column with
“Nanocarbosorb” ARK type which is produced by scientific-industrial technological
center “Zhalyn” (Almaty, Kazakhstan). Results of purification of sperosomes from
filling grains of wheat are presented in Figure 1. The fraction of sperosomes was
eluted in the first peak after chromatography on column with “Nanocarbosorb” ARK
type.
For isolation of phospholipids from fraction of spherosomes we used the Folch
reagent. This reagent consist of mixture of chloroform-methanol ratio 3:1 v/v. The
extracted phospholipids was analyzed by thin layer chromatography on two solvent
systems: 1) chloroform:methanol:ammonia (35:60:5); 2) chloroform:methanol:acetic
acid:water (50:25:8:4). The thin layer chromatographies showed that spherosomes
contains only one phospholipid. The staining of spot of phospholipid by staining by
silver nitrate solution speaks about the phospholipid of spherosome is
phosphatidylinozitol (PI). The further evedens of PI nature was obtained by element
analysis of phospholipid of spherosomes.
It was established by using of element X-ray analysis on X-ray analyzer INCA-
Xray Analytical system (Oxford, UK) this phospholipid consists of: С=34,85%,
О=23,50% , P=3,92%. We did not found of any traces of nitrogen. It means that PI of
spherosomes did not contain other phospholipids as impurities.
Further it is necessary to study the protein composition of spherosomes. For this
aim we have carried out SDS electrophoresis by Laemly. As it was shown the
spherosome contains only one polypeptide with molecular masse 52 kDa. It is the
subunit of molecule glutamate dehydrogenase (GDh).
Thus spherosome consist of only one phospholipid –PI and only one protein –
GDh. So we have determined that the content of PI is equal 30,82±1,01%, and GDh
is 68,35±1,03%.
For the understanding of the structure of spherosome it is necessary to pay
attention on the next experimental fact. While GDh may be released from
spherosome only by PI specific phospholipase C there is only one opportunity to
explain this phenomenon. GDh attached to inner bilayer PI vesicle membrane by its
own covalently bound glycosyl-phosphatidylinositol anchor which is anchored to PI
membrane by mechanism which is described by Low. Thus the GDh is attached to PI
membrane by its own covalently bound PI anchor. Numerous molecules of GDh form
the dense protein covering of the spherosome.
The existence of glycan part of GDh of sperosome speaks the next data. In the plants
earlier were found only 2 genes which coding two GDh proteins with molecular
masses about 42kDa. Difference between this data and our experimental data speaks
about presence in GDh molecule of big non protein part. As shown earlier by us the
molecule of wheat GDh contains in its composition the next sugars: mannose, xylose,
arabinose and glucose. Thus GDh of spherosome related to typically GPI proteins.
Thus the spherosome has inner bilayer PI vesicule and to it attached numerous
molecules of GDh. This molecules formed thick and dencer protein covering of
spherosom.
The unique structure of the spherosome we are developed the methods of practical
application of spherosome. For this purpose we us the purified spherosomes from
filling wheat grains.
We have determined natural catalytic activity of Nicotinamide adenine dinucleotide
phosphate-GDh (NADP-GDh) of spherosome from filling grains of wheat in reaction
of reductive amination of 2-oxoglutarate by the spectrophotometry at 340nm on the
spectrophotometer Ultrospec-1100 pro, Amersham Bioscience (UK). Reaction
mixture contained 15.4mM 2-oxoglutarate, 0.1mM NADPH, 0.05M MES buffer pH
8.3, and different concentrations of (NH4)
2
SO
4
. The concentration of 2-oxoglutarate
and NADPH was taken at full saturation concentration. The excess of these substrates
did not inhibit the reaction velocities. The total volume of reaction mixture was 2ml.
The controls were without 2-oxoglutarate or ammonia. The specific activity of
NADP-GDh is expressed as 1M of formed NADP per mg protein in 1 min. The
quantity of protein was determined by microbiuret method which is described by
Bailey. It is necessary to note that the studied fraction of spherosome shows high
activity of NADP-GDh without any treatment with detergents, phospholipases and
other agents. Thus, the whole body of spherosome shows up its activity without
disturbing its integrity. The specific activity of NADP-GDh is equal: 148±3 M
formed NADP per 1mg protein.
First of all it is necessary to study the dependence of activity of wheat spherosome
anchored NADP-GDh on ammonia concentrations. It is necessary to note that after
achievement of maximal activity the further increase in ammonia concentration
above optimal leads to inhibition of NADP-GDh activity by ammonia.
Thus, the NADP-GDh of spherosomes fraction has very high affinity to ammonia.
These results show that this spherosome plays key role in ammonia assimilation in
filling grains of the cereals. So the high sensitivity of spherosome to ammonia allows
to use it as biosensor to determine very low concentrations of ammonia.
In this reason this property of spherosome opens the perspective of its practical
application. It is well known that anthropogenic pollution by waste waters causes
increase in the contents of ammonia ions in natural water reservoirs – lakes and
rivers, whereas in unpolluted reservoirs ions of ammonia are absolutely absent. Thus
the presence of ammonia ions is the evidence of pollution of water reservoirs.
Therefore highly sensitive and accurate method for the determination of ammonia
ions concentration is necessary for ecological monitoring of natural waters. Existing
methods have low sensitivity and are not precise. They allow determining the
ammonia ions only in concentration range from 1mM to 100mM in the water.
Therefore for earlier prevention of water pollution there is high necessity for the
development of new biosensor with high sensitivity to ammonia.
It was shown that use of spherosome allows us to determine the concentration of
ammonia ions with high accuracy in range from 0.5 mkM to 10 mkM. Thus, we
developed highly precised and sensitive biosensor for determination of ammonia
ions, which has no analogues. And this method is also convenient for determination
of ammonia, 2-oxoglutarate and NADPH in biological liquids, which is very
important in clinical for diagnostic of different diseases.
Application of biosensor allows determining the concentration of 2-oxoglutarate in
range from 1mM to 10mM and concentration of NADPH in range from 0.5 mkM to
100 mkM.
Analysis of gene of GDh speaks that GDh molecules have the sites of so-called
“Ef-hand loop motive”. The same sites have very important regulatory proteins such
as calmodulin, centrin and etc., which plays important roles in regulation processes.
If GDh of spherosomes related to Ca
2+
-regulatory proteins, we tested stimulatory
effects of spherosome on plants.
We tested the stimulatory effects of calcium binded spherosomes from wheat filling
grains. The treatment of steam cuts of Hippophae rhaminoides L. by 0.01% by
spherosome solution from filling grains causes the intensive formation of roots. It
was shown the solution of spherosomes causes the intensive formation of roots.
Thus we established that solution of spherosomes may be effective rhyzogenic
biostimulator under the name Rhyzogenin which may be very usefull for vegetative
reproduction of tree plants and for wide application in cell cultures engineering. For
the first time it was shown that biostimulator is not bioorganic substance but protein-
lipid complex – spherosome.
We found the third aspect of spherosome application for medical aims.
If spherosomes contain only one phospholipid PI it is very convenient for isolation
of homogeneous PI. Our method allow to prepare PI 10 times cheaper than traditional
methods of isolation of PI. Because of high price of PI preparations (price by Sigma
catalogue 2006-2007, catalogue number PO639-50MG, the price per 50 mg is equal
641$) its application is very expensive. Our method opens wide application of PI.
First of all we tried to use our PI for preparation of PI liposomes.
The problem of delivery of medicine to diseased organ has not found satisfactory
solution. The existing delivery systems which are made from lecithine have some
serious disadvantages. They are not stable, easily agregate and cause danger of
blocking of blood vessels and others are made from chemical substances that cause
immune and allergic reaction. In this reason one of the main problem of modern
medicine is to develop new generation of medicine delivering systems. In this reason
we put task to make delivery systems which are made from PI. In contrast to electro
neutral lecithine PI is related to negative charged phospholipid. The PI liposomes
have size near 1 µm that is 10 times less than lecithine liposomes. To this reason PI
liposomes can be named as nanocontainers. PI liposomes have negative charge and
they push up each other and never agregate. Due to the charge the PI liposomes have
more hydrophilic properties and are very stable.
To prepare PI nanocontainers dried PI was desolved in bidistilled water. Then PI
solution was transfered by syringe to the solution of 0,05M tris-chloride buffer
pH=7,4 with 0,09% NaCl. After that the solution was treated ultrasonic dispergation
on Ultrasonic desintegrator UD-11 type (Techpan, Poland) during 5 minutes on
medium current strength. Ready nanocontainers were used for further work.
Then after of nanocontainers transfering to hydrophilic solution the they captivate
the medicine and then they closed. On the basis of the principle we developed the
new effective method of loading of nanocontainer which is protected by the patent of
the Republic of Kazakhstan.
We also prepared the new anti arthritic drugs on basis PI nanocontainers. We
loaded PI nanocontainers by nonsteroid anti-inflammatory medicines – piroxicam or
diclophenak.
The anti-inflammatory preparation was tested in reumatological centre of Almaty
on experimental and control groups of arthritic patients under supervision of
professor Seisenbayev A.S. Each group consists of thirty persons comparable by sex,
age, stage and activity of diseases processes. The patients of experimental group were
applied with the ointment containing our loaded PI nanocontainers. The patients of
control group were applied with the standard anti-inflammatory ointment of
piroxicam or diclofenak.
The tested preparation was rendered 2-3 times day on sick joints. After 3 weeks
essential reduction of a local painful syndrome was marked by 76.6% of patients of
experimental group and 50 % - in control group.
Thus the obtained our anti-inflammatory preparation on basis on PI nanocontainers
shows the better treatment results than standard drug. Our preparation has the next
advantages in comparison with standard drug:
- the quantity of piroxicam or diclofenak reduces more than ten times than standard
drug under the same or better therapeutic effect;
- more quicker and more deeper penetration of medicine into the tissues of joints
and more longer prolongation of the action of the medicines;
-all this led to significant reduction of toxic effects of medicines containing in our
PI nanocontainers.
Thus we developed the new generation of drug delivery systems namely PI
nanocontainers. These nanocontainers have obvious advantages on contrast to other
drug delivery systems: they do not block blood vessels, have no toxic effect, have a
good therapeutic effect and medicine action is prolonged. Using of nanocontainers
allow to make effective treatment without toxic damaging effect on other organs.
Достарыңызбен бөлісу: |