Образцов П. И. К90 Методы и методология психолого-педагогического исследования


Статистическая проверка научной гипотезы



бет50/92
Дата23.12.2022
өлшемі1,9 Mb.
#59307
1   ...   46   47   48   49   50   51   52   53   ...   92
Байланысты:
d88839b

Статистическая проверка научной гипотезы. Доказательство статистической достоверности экспериментального влияния суще­ственно отличается от доказательства в математике и формальной логике, где выводы носят более универсальный характер: статисти­ческие доказательства не являются столь строгими и окончательны­ми—в них всегда допускается риск ошибиться в выводах, и потому
153
статистическими методами не доказывается окончательно правомер­ность того или иного вывода, а показывается мера правдоподобности принятия той или иной гипотезы.
Педагогическая гипотеза (научное предположение о преимущест­ве того или иного метода и т. п.) в процессе статистического анализа переводится на язык статистической науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез. Первая (основ­ная) называется нулевой гипотезой (#0), в которой исследователь говорит о своей исходной позиции. Он априори как бы декларирует, что новый метод (предполагаемый им, его коллегами или оппонента­ми) не обладает какими-либо преимуществами, и потому с самого начала исследователь психологически готов занять честную научную позицию: различия между новым и старым методами объявляются равными нулю. В другой, альтернативной гипотезе (Я,) делается предположение о преимуществе нового метода. Иногда выдвигается несколько альтернативных гипотез с соответствующими обозначе­ниями.
Например, гипотеза о преимуществе старого метода обозначается как 2). Альтернативные гипотезы принимаются тогда и только то­гда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических эксперименталь­ной и контрольной групп настолько значимы (статистически досто­верны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:
♦ первый уровень — 5 % (в научных текстах пишут иногда р = 5 % или а < 0,05, если представлено в долях), где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испыту­емых для каждого эксперимента;
♦ второй уровень — 1 %, т. е. соответственно допускается риск оши­биться только в одном случае из ста < 0,01, при тех же требова­ниях);
♦ третий уровень — 0,1 %, т. е. допускается риск ошибиться только в одном случае из тысячи (а < 0,001).
Последний уровень значимости предъявляет очень высокие тре­бования к обоснованию достоверности результатов эксперимента и потому редко используется.
154
При сравнении средних арифметических экспериментальной и контрольной групп важно определить, какая средняя не только боль­ше, но и насколько больше. Чем меньше разница между ними, тем более приемлемой окажется нулевая гипотеза об отсутствии стати­стически значимых (достоверных) различий. В отличие от мышле­ния на уровне обыденного сознания, склонного воспринимать полу­ченную в результате опыта разность средних как факт и основание для вывода, педагог-исследователь, знакомый с логикой статистиче­ского вывода, не будет торопиться в таких случаях. Он, скорее всего, сделает предположение о случайности различий, выдвинет нулевую гипотезу об отсутствии достоверных различий в результатах экспе­риментальной и контрольной групп и лишь после опровержения ну­левой гипотезы примет альтернативную.
Таким образом, вопрос о различиях в рамках научного мышления переводится в другую плоскость. Дело не только в различиях (они почти всегда есть), а в величине этих различий и отсюда — в опреде­лении разницы и границы, после которого можно сказать: да, раз­личия неслучайны, они статистически достоверны, а значит, испы­туемые этих двух групп принадлежат после эксперимента уже не к одной (как раньше), а к двум различным генеральным совокупно­стям, и уровень подготовленности учащихся, потенциально принад­лежащих этим совокупностям, будет существенно отличаться. Для того чтобы показать границы этих различий, используются так назы­ваемые оценки генеральных параметров.
Рассмотрим на конкретном примере (табл. 6.6), как с помощью математической статистики можно опровергнуть или подтвердить ну­левую гипотезу.
Допустим, необходимо определить, зависит ли эффективность групповой деятельности студентов от уровня развития межличност­ных отношений в их учебной группе. В качестве нулевой гипотезы выдвигается предположение, что такой зависимости не существует, а в качестве альтернативной — зависимость существует. Для этих це­лей сравниваются результаты эффективности деятельности в двух группах, одна из которых в этом случае выступает в качестве экспе­риментальной, а вторая — контрольной. Чтобы определить, является ли разность между средними значениями показателей эффективно­сти в первой и во второй группах существенной (значимой), необхо­димо вычислить статистическую достоверность этой разницы. Для
155
этого можно использовать t-критерий Стъюдента. Он вычисляется по формуле





Вычислив величину ^-критерия, по специальной таблице опреде­ляют уровень статистической значимости различий между средними показателями эффективности деятельности в экспериментальной и контрольной группах. Чем выше значение ^-критерия, тем выше зна­чимость различий.
Для этого t расчетное сравниваем с t табличным. Табличное зна­чение выбирается с учетом выбранного уровня достоверности = = 0,05 или р = 0,01), а также в зависимости от числа степеней свобо­ды, которое находится по формуле





156





Для таблицы t-критерия находим, что значение tTa6jl = 3,055 для однопроцентного уровня (р < 0,01) при 12 степенях свободы. Таким образом, величина £та6л < t асч. Следовательно, можно сделать стати­стически обоснованный вывод о том, что эффективность деятель­ности в экспериментальной группе выше, чем в контрольной, при уровне значимости 0,01 (риск ошибки составляет одна из ста теоре­тически возможных).
Однако педагогу-исследователю следует помнить, что существо­вание статистической значимости разности средних значений может быть важным, но не единственным аргументом в пользу наличия или отсутствия связи (зависимости) между явлениями или переменны­ми. Поэтому необходимо привлекать и другие аргументы количест­венного или содержательного обоснования возможной связи.
157


Достарыңызбен бөлісу:
1   ...   46   47   48   49   50   51   52   53   ...   92




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет