Ұлы математиктер туралы мәлімет беру, әртүрлі деңгейлі есептер шығарту
Құндылықтарды дарыту
Оқушыларды бір-біріне деген құрмет көрсетуіне тәрбиелеу.
Сабақтың барысы
Сабақтың кезеңі
Педагогтың әрекеті
Оқушының әрекеті
Бағалау
Ресурстар
Сабақтың басы
Оқушылармен сәлемдесу, түгелдеу
Жаңа сабақтың тақырыбы мен мақсатын анықтау.
Оқушылардың арасында жағымды ахуал орнату мақсатында ынтымақтастық атмосферасын орнату.
Оқушылар шеңберде жиналып,мұғаліммен бірге бүгінгі сабаққа сәттілік тілейді.
Зейіндерін сабаққа аударады, жауап береді.
Мадақтау, толықтыру
Оқулық, видео, слайдтар
Сабақтың ортасы
Есімі дүние жүзіне мәлім болып, ғылыми және мәдени мұралары ғасырлар бойы ардақталып, ұрпақтан-ұрпаққа өтіп келе жатқан ардагер азаматтар тарихта аса көп емес. Тарих жазбасында, халықтың рухани қазынасында айтулылардың айтулысы, жүйріктердің жүйрігі ғана мәңгі ұялап қоныс тебеді. Мың жылдан артық уақыт өтсе де, аты ауыздан-ауызға жатталып, еңбектері уақыттың, мезгілдің қатыгез сынынан мүдірмей өткен, сол адамзат ұлдарының, тарих перзенттері Аристотель, Әбунасыр Фараби, Ахмес, Пифагор, Евклид, Архимед, Эратосфен, Әл-Хорезми, Фибаначчи, Галилей.
Аристотель
Бұл кісінің есімі халық арасында бұрыннан-ақ белгілі. Абайдың «Ескендір» поэмасындағы қанқұйлы, дүлей күш Ескендірді тоқтатқан Аристотель асқар таудай ақыл иесі ретінде танылады. Шынында Аристотельдің барлық халықтар, барлық ұрпақтар тарапынан ерекше баға алып, қошеметке бөленуі тегін емес. Ол өз заманында адам баласына керек білімнің барлық салалары бойынша қалам тартып, керемет ғылыми тұжырымдар жасаған. Авторлардың біреуі Аристотель 400 кітап жазған десе, енді біреулері 1000 кітап жазған деседі. Аристотель шәкірттеріне бақ ішінде серуен құрып жүріп, сабақты әңгіме түрінде жүргізеді екен. Аристотельдің сабақтары таңертеңгілік және кешкілік болып екіге бөлінетін болған. Таңертеңгі ігңмелерге Аристотель тек дараны мен дайындығы мол шәкірттерді ғана қатыстырып, оларға логиканы, филасофияның қиын мәселелерінен хабар беріп отырған. Ал кешкі әңгімелер көпшілік шәкірттерге арналып, мұнда шешендік өнері, саясат сияқты ұғымға жеңіл сауалдарға жауаптар берілген. Аристотельдің логикасы математиканың дамуына күшті ықпал жасады, ол геометрияда дедуктивтік логикалық әдістің қалыптасуына әкеледі. Қазіргі математикалық құрылыстың негізгі ірге тасы саналатын аксиома, анықталса, теорема, дәлелдеу делетіндер. Аристотельдің логикасы негізінде жасалған.
Әбунасыр Фараби
Ол Отырарда туған. Фараби түркі, араб, парсы, грек және басқа тілдерді жетік білген. Кейбір деректер бойынша тіпті ол 70 тіл білген деп те айтады. Фарабидің энциклопедиясында математика ғылымдарына көп орын берілген. Ол математиканы үлкен-үлкен жеті тарауға бөлегн. Енді әрқайсысына жеке-жеке тоқталайық. Арифметика, яғни сан туралы ғылым. Математиканың бұл тарауы жөнінде Фараби былай дейді: «Арифметика екі ғылымды біріктіреді: біріншісі – практикалық арифметика; екіншісі – теориялық арифметика». Фараби, сөйтіп, арифметиканы практикалық және теориялық арифметика деп екіге бөлінеді. Ол, әсіресе, теориялық арифметикаға ерекше мән береді. Арифметиканың негізгі ұғымы сан. Фарабидің түсіндірілуі бойынша, сан объективті ақиқат нәрселердің сезіп-түйсінуге болатын, яғни «көзбен көріп, қолмен ұстауға» болатын жақтарын елеусіз қалдырып, тек саналуға, есептелуге тиісті қырларын бейнелейді. Бұл өте дұрыс материалистік түсінік. Фарабидің айтуынша теориялық арифметика үш тарауды қамтиды: 1) сандардың бір-біріне қатыссыз жеке-дара қасиеттерін қарастыратын тарау (жұп және тақ сандар, кемел, жазық, т.б. сандар теориясы); 2) сандардың бір-біріне қатысты қасиеттерін қарастыратын тарау (теңдігі, теңсіздігі, қатынасы, пропорция, өзара жай сандар, еселі сандар, т.б.); 3) сандарға амалдар қолдану. Геометрия ғылымның мазмұны мен пәнін ғылым төмендегіше тұжырымдайды: «Геометрия екі ғылымды біріктіреді: біріншісі – практикалық геометрия, екіншісі – теориялық геометрия». Практикалық геометрия сызықтар мен беттерді ағаш ұстасы, темірші, тас қалаушы, жер бетінде қарастырады. Теориялық геометрия сызықтары мен жазықтықтарды абсалют мағынада барлық денелерге ортақ мағынада қарастырылады.
Ахмес Шамамен б.д.д 1700 ж.
Әлемге әйгілі бірінші математиктің есімі – Ахмес. Б.э.д 1700ж оның математикалық есептегре құрылған еңбегі ұзындығы 6 метр (20 фунт) папирус орамасына жазылған. Солардың біреуі санды ұдайы екі еселеу арқылы көбейту тәсілін көрсетеді. Осы есеп бинарлық жүйеге із салады, соның арқасында бүгінгі сандық техналогияларға қол жетті. Ахмес тек осы қағаз ораманы көшіріп жазып алды, оның нағыз авторларының есімдері белгісіз.
Пифагор
Б.э.д. 569 – 475ж
Грек ғалымы Пифагор матиматикаға негізделетін құпия ілімнің негізін қалады. Ол сандардың барлық нәрсе екенін және математиканың көмегімен кез келген құбылысты түсіндіруге болатынын дәлелдеген. Мысалы, ол музыкалық аспаптың табиғи көлемінің жартысына тең музыкалық ішек кесіндісінің бір октаваға жоғары дыбыс шығаруға мүмкіндік туғызатынын ашқан. Пифагор жердің шар тәріздес екенін бірінші ұққан және дұрыс ұшбұрыштардың әйгілі теоремасын дәлелдеген. Ол сондай-ақ нысанын өзгеруге сенген және тамаққа бұршақтарды салуға тыйым салған. Пифагор сандары – натурал сандар үштігі, бұл сандар ұшбұрыш қабырғаларының ұзындығына пропорционал (немесе тең) болса, онда ұшбұрыш тіктөртбұрышты болып табылады. Бұл үшін Пифагордың кері теоремасы бойынша ол сандардың x² + y² = z² түріндегі диофант теңдеуін қанағаттандыруы жеткілікті (мыс., x = 3, y = 4, z = 5) өзара жай Пифагор сандарының кез келген үштігі мына формулалар арқылы анықталады: x² = m² - n², y = 2mn, z = m² + n², мұндағы m және n – бүтін сандар (m > n > 0).
Евклид
Б.д.д. 325 – 265ж
Евклид ежелгі дәуірдегі грек математикгі. Ол математикадан жазылған теориялық алғашқы трактаттың авторы, Александрия қарамағындағы мектептің тұңғыш математигі. Оның өмірі жайлы деректер жоқтың қасы. Евклидтің басты еңбегі – «Негіздер». Онда планиметрияның, стреометрияның кейбір мәселелері талданған. Сөйтіп, ол өзінен бқрынғы грек математикасының одан әрі дамуының ірге тасын қалаған. Евклидтің «Негіздерден» басқа «Фигураны бөлу туралы», «Канустың қималары» деп аталатын еңбектері бар. Ол астраномиядан, музыкадан, т.б. салалардан да еңбектер жазған. Евклидтің бізге жеткен шығармалары мына басылымда жинақталған: «Eudidis Opera Menge». Онда грекше түр нұсқасы, латыннан аудармасы және кейінгі авторлардың түсініктемелері берілген. Евклид «Негіздерінің» математиканы дамытуда әсері орасан зор болады. Бұл еңбектен тәлім алмаған ірім-ұсақты математик жоқ деуге болады. «Негіздер» орыс тілінде тұңғыш рет 1739 жылы аударылып басталып шықты, ал ең кейінгі жаңартылған аудармасы 1948-1950 жылдары жарық көрді. Математиканы сүйетін әрбір талапкердің ғылымының классикалық бұл еңбегімен танысып аса пайдалы болар еді.
Архимед
Б.д.д. 287 – 212 жж
Гидростатика принципін ашқан Архимед шомылып жатқан жерінен тыр жалаңаш атып шығып, сол күйінде: «Эврика»-деп айқайлап, көне аралап жүгірмемен белгілі. Аса көрнекті грек математигі болған ол П санының 3 ондық бегісін, сфера бетінің көлемі мен ауданын есептеп шығарып, қару ойлап тапқан, тұтқалар мен блоктардың принципін түсіндірген. Ол: «Маған ұзын тұтқа мен тіреу нүктесін беріңдерші, сонда мен Жерді орнынан жылжытамын»,-деген.
Эратосфен
Б.д.д. 276 – 194 жж
Грек ғалымы Эратосфен математикалық қатар астрономия, география, тарихты да жақсы білген. Ол жай сандарды табудың тәсілін ойлап тауып, сол кездегі белгілі әлем картасы мен аспан денелерінің картасын жасаған, сондай-ақ (високосный) жылды еңгізудің қажеттілігін негіздеген. Оның негізгі жетістігі – Жердің көлемін адамдар оның шар тәріздес екенін білгенге дейін есептеп шығаруы. Өз есептеулерінің негізінде ол картада белгіленбеген мұхиттың әлі де орасан үлкен кеңістіктері бар екенін болысады және оның айтқаны дұрыс келеді.
Әл – Хорезми
780 – 850
Араб математигі әл – Хорезми Бағдатта тұрды. Математика бойынша ол жазған екі кітап бүкіл әлемге араб цифрлары мен нөлдің тарауына септігін тигізді. «Арифметика» және «Алгоритм» терминдері сол жасаған сөздіктерден бізге келді, ал алгебра сөзі оның «Хибас әл – жабр уа-л мукабаля» кітабы тақырыбының бір бөлігі болып табылады. Ал геогрф ретінде сол кездегі белгілі әлемнің толық картасын жасауға көмектесті.
Фибоначчи
1170 – 1250 жж
Леонардо Пизанский өзінің Фибоначчи есімімен көбірек танымал. Иналияндық саяхатшы – саудагердің ұлы болған ол өзінің өмірінің көп жылдарын Алжирде өткізді, арабтар оны араб сандарын пайдалануға үйретті. Осы сандарды оңай қосуға болатынына таңданған Фибоначчи көп ұзамай осы амалдар туралы кітап жазады, соның нәтижесінде бұларды Италияда да пайдалана бастайды. Ол сондай-ақ Фибоначчидің сандық тізбегін ойлап тапты, тізбек табиғатпен және алтынның арасалмағымен байланысты.
Г.Галилей
1564 – 1642 жж
Галилей Галелео (15.2.1564, Италия, Пиза - 8.1.1642, Флоренция маңындағы Арчетри қ) – италиялық физик, механик, астраном, табиған тану ғылымдарының негізін салушы. Кедейленген ақсүйек отбасында туған. Әкесі Винисицо белгілі музыкант болған. Галилейдің үлкен оқымысты болуына әкесінің ықпалы тиген. 11 жасына дейін Пиза қаласында тұрып, кейін отбасы Флоренцияға көшеді. 1581 жылы Пиза университетіне түсіп, медицинаны оқып үйренеді. Мұнда ол Аристотель, Евклид, Архимед еңбектерімен танысады. Сөйтіп, геометрия мен механикаға әуестенген Галилео медицинаны тастайды. Кейін Флоренцияға қайта оралып, төрт жыл бойы математиканы зерттейді. 1589 жылы Пизада математика кфедрасын қабылдап алып, ғылыми жұмысы одан әрі жалғастырылады. Аристотельге қарсы «Қозғалыс туралы сұхбат» деген еңбек жазады. 1592 жылы Падуяда математика кафедрасын басқарады. Бұл кезең (1592 – 1610 жж). Галилейдің шығармаларының кемеліне келген шағы болатын.
Птолемей
Клавдий Птолемейдің өмір жолы туралы мағұлмат жоқтың қасы, тек қана біздің заманымыздың 120 жылынан бастап Александрияда өмір сүргені белгілі. Ол өзінің жетістіктері негізінде арабтар «Алмагест» деп атап кеткен. Үлкен еңбектің авторы «Алмагест» арабша «алмаджести», яғни «аса ұлы» шығарма дегенді білдіреді. Птолемейдің бірінші кітабында гректердің триогеометриясы жүйелі түрде баяндалған. Мұнда 0º бастап 180º дейінгі хордалардың таблицалары келтірілген. Тарихи жазбалар бойынша хордалар таблицасын алғаш жасаушы ретінде б.з.д. 2 ғасырда өмір сүрген астраном математик Гипарх екен. Бірақ ол таблицалар бізге жеткен жоқ. Грек математиктерінде бұл кезде синус, косинус және тангенс сызықтары болмаған. Бұлардың радиусы тұрақты дөңгелектің центрлік бұрыштарына сәйкес келетін хордалардың ұзындығын есептейді. Птолемей дөңгелек шеңбердің 360º, ал оның диаметрін 120 бөлікке бөледі, сөйтіп, хорданың ұзындығын дөңгелектің радиусы (орнықты) арқылы өрнектейді. Басқа бұрыштарға қандай хордалар сәйкес келетінін анықтауға Птолемей шеңберді іштей сызылған төртбұрыш дөңгелекке іштей сызылса, онда оның диогональдарының көбейтіндісі қарама – қарсы қабырғалардың көбейтінділерінің қосындысына тең болады. Бұл теорема қазір Птолемейдің есімімен аталып жүр