Пример 5.1. Рассмотрим применение метода Ньютона на примере системы двух нелинейных уравнений
(5.12)
Прежде чем разбирать конкретные шаги по решению системы (5.12), распишем в общем виде якобиан для системы из двух уравнений
Здесь A, B, C, D – функционалы от переменных x1, x2. Нас фактически интересует W-1. Пусть матрица W- неособенная, тогда обратная матрица вычисляется
Теперь вернемся к системе (5.12). Графическое решение этой системы дает две точки пересечения: М1 (1.4; -1.5) и М2 (3.4; 2.2). Зададим начальное приближение:
Используя формулу (5.11), получим:
Аналогично получим:
5.2. Метод градиента (метод скорейшего спуска)
Пусть имеется система нелинейных уравнений:
(5.13)
Систему (5.13) удобнее записать в матричном виде:
(5.14)
где - вектор – функция; - вектор – аргумент.
Решение системы (5.14), как и для системы линейных уравнений (см. п. 3.8), будем искать в виде
(5.15)
Здесь и - векторы неизвестных на p и p+1 шагах итераций; вектор невязок на p-ом шаге – f(p) = f(x(p)); W'p – транспонированная матрица Якоби на p – ом шаге;
;
.
Пример 5.2. Методом градиента вычислим приближенно корни системы
расположенные в окрестности начала координат.
Имеем:
Выберем начальное приближение:
По вышеприведенным формулам найдем первое приближение:
Аналогичным образом находим следующее приближение:
Ограничимся двумя итерациями (шагами), и оценим невязку:
Замечания
Как видно из примера, решение достаточно быстро сходится, невязка быстро убывает.
При решении системы нелинейных уравнений методом градиента матрицу Якоби необходимо пересчитывать на каждом шаге (итерации).
Достарыңызбен бөлісу: |