4.5. Метод Ньютона (метод касательных)
Пусть корень ξ уравнения
f(x) = 0, (4.13)
отделен на отрезке [a, b], причем первая и вторая производные f(x) и f(x) непрерывны и сохраняют определенные знаки при . Найдя какое-нибудь n-ое приближение корня , мы можем уточнить его по методу Ньютона следующим образом. Пусть
ξ = xn + hn, (4.14)
где hn - величина малая. Отсюда по формуле Тейлора получим (ограничиваясь первым порядком малости относительно hn)
f(xn + hn) = f(xn) + hn f(xn) = 0. (4.15)
Следовательно,
hn = - f(xn) / f (xn). (4.16)
Подставив полученное выражение в формулу (4.14), найдем следующее (по порядку) значение корня:
(4.17)
Проиллюстрируем графически нахождение корня методом Ньютона (рис. 4.3.).
Рис. 4.3. Уточнение корня методом касательных
Если в качестве начального приближения выбрать точку х0 = В0 , то процесс быстро сходится. Если же выбрать точку х0 = А0, то х1 [a, b], и процесс нахождения корня расходится. Рекомендуется: в качестве х0 выбрать точку, где f(x)·f(x) > 0.
Пусть f(a)·f(b) < 0, а f(x) и f(x) сохраняют постоянные знаки на отрезке [a¸ b]. Соединяя метод хорд и метод касательных, получаем метод, на каждом шаге которого находим значения по недостатку и значения по избытку точного корня ξ уравнения f(x) = 0. Теоретически здесь возможны четыре случая:
f(x) > 0; f(x) > 0;
f(x) > 0; f(x) < 0;
f(x) < 0; f(x) > 0;
f(x) < 0; f(x) < 0.
Рассмотрим только первый случай, так как остальные три ведут себя аналогично и могут быть сведены к первому.
Итак, пусть f(x) > 0 и f(x) > 0 при . Полагаем, что (для метода хорд), (для метода касательных). Тогда новые значения корня вычисляем по формулам
(4.18)
Рис. 4.4 наглядно иллюстрирует суть комбинированного метода.
Достарыңызбен бөлісу: |