Мысалы:
1-есеп. Сыныпта 16 ұл бала бар. Олардың 14-і бос уақытында футбол ойнағанды ұнатады, 9-ы шахмат ойнағанды ұнатады. Бұл ойындарға сыныптағы барлық ұл балалар қатысады. Сыныптағы неше оқушы бос уақытында футбол ойнағанды да, шахмат ойнағанды да ұнатады?
Шешуі: Бос уақытында футбол ойнағанды ұнататын сыныптағы ұлдардың жиыны - A, n(A)=14. Бос уақытында шахмат ойнағанды ұнататын сыныптағы ұлдардың жиыны - B, n(B)=9.
1)14 + 9 = 23 - бос уақытында футбол ойнағанды ұнататын және шахмат ойнағанды ұнататын сыныптағы ұлдар саны.
2)23 - 16 = 7 - бос уақытында футбол ойнағанды да, шахмат ойнағанды да ұнататын сыныптағы ұлдар саны.
Сыныптағы футбол ойнағанды да, шахмат ойнағанды да ұнататын ұлдар жиыны C болсын, онда
n(C)=7. Демек, C жиыны A және B жиындарының қиылысу жиыны, себебі мұндағы әрбір ұл бала A жиынына да, B жиынына да тиісті (ортақ).
Есептің шешуі Эйлер-Венн дөңгелектерімен былай кескіндейміз.
Суретте - Эйлер-Венн дөңгелектері
Әрбір элементі A немесе B жиындарының кем дегенде
біреуіне тиісті болатын жиын A және B жиындарының бірігуі деп аталады.
2-есеп. Бір топтағы туристердің 10-ы қазақ тілін біледі, 8-і орыс тілін біледі, олардың 3-еуі қазақ тілін де, орыс тілін де біледі. Топта барлығы неше турист бар?
Шешуі: Бір топ туристердің қазақ тілін білетіндердің жиыны - A; n(A)=10. Орыс тілін білетіндерінің жиыны - B; n(B)=8.
1)10 + 8 = 18 - топ ішіндегі туристердің қазақ тілін білетіндердің және орыс тілін білетіндердің саны.
2)18 - 3 = 15 - топ ішіндегі туристер саны. Топтағы туристер D жиынын құрайды n(D)=15. Демек, D жиыны өзара қиылысып тұрған A және B жиындарының бірігуіболып табылады.
Есептің шешуі Эйлер-Венн дөңгелектері арқылы былай кескіндейміз. А U B = D
Суретте - A және B жиындарының бірігуі.
Жиындағы негізгі қасиеттері.
Жиындарға амалдар қолданып, жаңа жиындар алуға болады. Осы амалдардың негізгі қасиеттері мен олардың арасындағы байланыс жиындар алгебрасы деп аталады.
1. Кесте - Жиындарға қолданатын амалдардың қасиеттері:
|
|
1
|
(идемпотенттік)
А А=А
|
А А=А
|
2
|
Ауыстырымдылық (коммутативтік)
А В=В А
|
А В=В А
|
3
|
Үлестірімділік
А (В С) =(А В) С
|
А (В С) =(А В) С
|
4
|
Терімділік (дистрибутивтік)
А (В С) =(А В) (А С)
|
А (В С) =(А В) (А С)
|
5
|
Сіңіру
А (В А)=А
|
А (В А)=А
|
6
|
Нөлдің қасиеті А Ø=А
|
А Ø= Ø
|
7
|
Бірдің қасиеті А U= U
|
А U= А
|
8
|
Қосалқы принципі (де Морган заңы)
|
|
9
|
Екі рет теріске шығару
|
|
10
|
Толықтауыштың қасиеті
|
Ø
|
Жиындар арасындағы қасиеттер (заңдар) жоғарыдағы келтірілген қасиеттермен шектеліп қоймайды. Қалған қасиеттерді логика алгебрасының ережелері бойынша аталған касиеттерді қолданып алуға болады.
|