Салыстырудың анықтамалары, оның негізгі қасиеттері



бет5/6
Дата07.01.2022
өлшемі30,67 Kb.
#18839
1   2   3   4   5   6
Байланысты:
Салыстырудың анықтамалары

Теорема 1.1.3 Егер a ≡ b (mod m) және d - кез келген натурал сан болса, онда

da ≡db (mod cm).



Дәлелдеуі. Егер a ≡ b (mod m) болса, онда m⎹ a – b, km⎹ da-db, da ≡ db (mod cm)

Теорема 1.1.4 Егер da ≡ db (mod cm), мұнда с, d - кез келген натурал сан, онда

a ≡b(mod m).



Дәлелдеуі. Егер da ≡ db (mod cm), онда dm⎹ da –db, dm⎹ d(a – b), dнатурал сан немесе d ≠0 онда m⎹ a –b яғни, a ≡b(mod m).

Мысалы: 1) 11≡ -5 (mod 8) және 7 ≡ - 9 (mod 8) салыстыруларды 3-ке көбейтсек:

33 ≡ -15 (mod 8),

35 ≡ - 27 (mod 8).

(1.1.15) салыстырудың ортақ көбейткішке қысқартсақ, дұрыс салыстыру ала аламыз ба деген сұрақ туындайды. Міне, бұл жерде салыстыру теңдеуден өзгеше.

2) 22≡ -2(mod 8) салыстыруды ортақ көбейткішке 2-ге бөлетін болсақ, біздің салыстыруымыз 11≡ -1(mod 8) түрге келуші еді, бірақ бұл дұрыс емес.

3) Салыстырудың қасиеті бойынша берілген 60 ≡ 9 (mod 17) екі жағын 3-ке бөлеміз: 20 ≡ 3 (mod 17).

4) 8 ≡ 4 (mod 4), бірақ 2 ≢ 1 (mod 4), яғни a ≡ b салыстырудың орны әртүрлі бірнеше модульдері бар болса, онда осы модульдердің ең кіші ортақ көбейткішіне тең модуль бойынша орынға ие.





Достарыңызбен бөлісу:
1   2   3   4   5   6




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет