Na
2
СO
3
·10H
2
O – CH
3
COONa·3H
2
O жүйесінің күй диаграммаларын тұрғызу
Мақалада термиялық сараптама əдісімен Na
2
СO
3
·10H
2
O – CH
3
COONa·3H
2
O кристаллогидраттар
жүйесінің күй диаграммалары тұрғызылды, олар эвтетикалық типті болды. Эвтектика құрамы:
66 масс.% Na
2
СO
3
·10H
2
O + 34 масс.% CH
3
COONa·3H
2
O. Эвтектикалық температура –11±0,7 ºС. Күй
диаграммаларының типін айқындауға қолданылған солидус пен ликвидус сызықтарына қатысты
қоспалардың кристалдануы мен балқу энтальпиялары анықталды. Эвтектикалық құрамға жақындау
шамасына қарай суытылудың төмендеуі байқалды. Эвтектикалық құрам жылуаккумуляциялық
материал ретінде қолданылуға ұсынылды.
Ш.К.Амерханова, В.Д.Александров, А.Ю.Соболев
Построение диаграммы состояния системы Na
2
СO
3
·10H
2
O – CH
3
COONa·3H
2
O
В статье методами термического анализа построена диаграмма состояния в системе кристалло-
гидратов Na
2
СO
3
·10H
2
O – CH
3
COONa·3H
2
O, которая оказалась диаграммой эвтектического типа. Со-
став эвтектики: 66 масс.% Na
2
СO
3
·10H
2
O + 34 масс.% CH
3
COONa·3H
2
O. Эвтектическая температура –
11±0,7 ºС. Измерены энтальпии плавления и кристаллизации смесей относительно линии ликвидуса и
солидуса, которые были использованы для уточнения типа диаграммы состояния. Установлено
уменьшение переохлаждений по мере приближения к эвтектическому составу. Эвтектический состав
предложен для использования в качестве теплоаккумулирующего материала.
References
1 Beckman G., Gili P. Thermal energy storage, Moscow: Mir, 1987, 272 p.
2 Levenberg V.D., Tkach M.R., Golstrem V.A. Heat storage, Kiev: Tekhnika, 1991, 112 p.
3 Danilin V.N., Dolesov A.G. Bulletin of the Kuban State Technology University, 2008, 6, p. 5–10.
4 Naumann R., Emons H. Sitzungsber. Acad. Wiss. DDR. Math-Natur-Wiss.-Techn., 1986, 3, p. 31–44.
5 Naumann R., Fanghiinel Th., Emons H. Journal of Thermal Analysis, 1988, 33, p. 685–690.
6 Cabeza L.F., Svensson G., Hieler S. Appied Thermal Engineering, 2003, 23, p. 1697–1704.
7 Mikko Keinänen. Latent heat recovery from supercooled sodium acetate trihydrate using a brush heat exchanger: Master’s
thesis … the degree of Master of Science in Technology, Helsinki University of Technology, 2007, 104 p.
8 Dreving V.P. Phase rule, Moscow: Publ. House of Moscow University, 1954.
9 Rabinovich V.A., Khavin Z.Ya. Concise chemical directory, Moscow: Chemistry, 1977, 432 p.
10 Tooru Taga. Acta crystallographica, 1969, B. 25, p. 2656–2658.
11 Efremov V.A., Endeladze N.O., Agre V.M., Trunov V.K. Journal of Structural Chemistry, 1986, 27, 3, p. 177–180.
Серия «Химия». № 3(75)/2014
33
UDC 541.515
A.S.Masalimov, S.N.Nikolskiy, E.A.Ralchenko, I.A.Pustolaykina, A.A.Tur
E.A.Buketov Karaganda State University
(E-mail: masalimov-as@mail.ru)
Quantum-chemical investigation of the fast intermolecular
proton exchange reactions mechanism in paramagnetic systems
For a theoretical interpretation of the fast intermolecular proton exchange (IPE) reaction mechanism by ab in-
itio methods of modern quantum chemistry potential energy surface in the oxymethyl – ammonia acid-base
free-radical system was investigated. This system an experimental EPR spectroscopic kinetic data for such
reactions in the real liquid phase systems was simulated. The role of short lived intermediates as molecular
and ionic complex four-center hydrogen bond due to manage the flow of IPE-fast reactions in the acid-base
paramagnetic compounds have been established.
Key words: semiquinone radicals, oxymetyl radical, EPR-spectroscopy, intermediate, hydrogen bridge,
protolytic reaction, proton exchange reaction, proton transfer proton exchange, quantum chemical calcula-
tions, ab initio, potential energy surface.
The using of stable semiquinone radicals (XH) as spin probes for EPR-spectroscopic determination of
rates constants of the fast intermolecular proton exchange (IPE) reactions allowed to study the protolytic ac-
tivity of different organic acids and bases (YH) in solutions [1]. The systematic experimental investigations
of kinetic of such acid-base reactions showed that they have the common mechanism described with next
scheme:
(1)
Here: asterisk denotes the acids proton with another orientation of spin; B, B
+
and C, C
+
are the short-lived
intermediates of IPE-reactions.
For example, as spin probes (XH) were used next stable semiquinone radicals: 3,6-di-tert.butyl-2-
oxyphenoxyl (I), 4,6-di-tert.butyl-3-clorine-2-oxyphe-noxyl (II) and 4-triphenylmethyl-6-tert.butyl-3-clorine-
2-oxyphenoxyl (III).
For theoretical calculations of mechanism of the fast IPE reaction illustrated by scheme (1) was used
quantum chemical ab-initio method with UHF 3–21G orbital bases, contained in licensed program packet
Gaussian-2009 (Pittsburgh, USA) [2–5]. For modeling of the fast IPE reactions between paramagnetic
OH-acids I–III and NH-acids as primary and secondary amines, were taken simple smallish molecular sys-
tem oxymethyl – ammonia. It should be noted that at the first time oxymetyl-radical was studied as OH-acid
with dynamic EPR spectroscopy by H.Fischer in 1964 [6].
The quantum-chemical counts show that small molecule of paramagnetic OH-acid form with base mole-
cule of ammonia two types of complexes with hydrogen bond CHB): linear and cyclic, presented on Table 1.
The computation estimates that value of thermodynamic stability of linear CHB more on
∆E = 10,3905 kcal/mol than total energy of cyclic complex with two hydrogen bridges. This effect may be
explain by influence of the high values of ionization potentials: IP = 7.0663 eV for oxymethyl and
IP = 8.0530 eV for ammonia [5].
For calculation of the potential energy surface (PES) of modeling protolytic system CH
2
OH – NH
3
was
used the specific bimolecular structure with three dummy atoms: 3X, 4X and 8X (see Fig. 1). Such approach
allow to move two acid protons inside the cyclic CHB from initial to final reaction states with the value of
rated step ∆ = 0.01 Å.
A.S.Masalimov, S.N.Nikolskiy et al.
34
Вестник Карагандинского университета
T a b l e 1
Electronic structures and the values of total energies for different CHB forming
between oxymethyl and ammonia, obtained by ab-initio UHF 3- 21G method
CHB Electronic
structure –
E
t
, a.u.
Linear complex
169.6672
Cyclic complex
169.6506
Figure 1. The structure of modeling IPE reaction system used for computation of PES
On the figure 2 presented the PES calculated by ab-initio method with using UHF 3–21G orbital bases
and modeling illustrated by figure 1.
Figure 2. The three-dimensional potential energy surface for modeling protolytic reaction
between oxymethyl and ammonia, obtained by ab-initio method with UHF 3–21G orbital bases
1
2
C+
B
B+
R(NH), Å
R(OH), Å
E
t
, a.u.
4
3
C
Quantum-chemical investigation …
Серия «Химия». № 3(75)/2014
35
The potential energy surface on figure 2 illustrate electron-structural properties of the reversible two-
channel fast IPE reaction going on ways: B
C
+
B
+
and B
C
B
+
. It should be noted that the
rates of the initial step of IPE reaction (1) A
B controlled by diffusion in investigated liquid system.
The analyses of three-dimensional PES topology for the fast IPE reaction between modeling acid –base
small molecules shows on formation of 2 short-lived intermediates C and C
+
that denote in scheme (1) and on
existence of 4 saddle points corresponding to 2 channel for reactions: B
C
+
B
+
and B
C
B
+
.
The values of total energies for this 4 intermediates presented on Table 2.
T a b l e 2
Electronic structures and the values of total energies for intermediates of reaction
between oxymethyl and ammonia, obtained by ab-initio UHF 3- 21G method
Intermediates Electronic
structure
–
E
t
, a.u.
В
169.6506
C
+
169.5611
B
+
169.6506
C
169.4625
The computed PES on figure 1 shows that the reaction channel B
C
+
B
+
is the preferred for
protolytic acid–base interaction between oxymethyl and ammonia. Thermodynamic stability of intermediate
C
+
on the value ∆ Е = 70.8587 kcal/mol more than value of total energy for intermediate C.
The potential energy surface presented on Figure 2 give yet four saddle point of corresponding transi-
tion states which contained on Table 3. It is evidently that initial intermediate of reaction B has the value of
total energy on ∆Е = 56.1559 kcal/mol lower then ionic CHB C
+
. It should be noted that initial B and final
B
+
intermediates of the fast modeling IPE reaction have equal electronic structure and the values of total en-
ergy. The values of activation energy for direct B→C
+
transition received E
1
= 76.6735 kcal/mol and for re-
verse reaction C
+
→B E
–1
= 20.5163 kcal/mol. Analogous values for second channel of IPE reaction В
С
are equal: E
1
= 99.2680 kcal/mol and E
–1
= 18.7480 kcal/mol.
A.S.Masalimov, S.N.Nikolskiy et al.
36
Вестник Карагандинского университета
T a b l e 3
Electronic structures and the values of total energies for transition states of reaction
between oxymethyl and ammonia, calculated by ab-initio UHF 3-21G method
Transition
states
Electronic structure
–
E
t
, a.u.
1
169.5284
2
169.5506
3
169.4924
4
169.4935
T a b l e 4
Distribution of atomic charges in ionic intermediates of modeling IPE reaction
between oxymethyl and ammonia
Intermediates
Distribution of atomic charges
Intermediate С
+
Intermediate С
Серия «Химия». № 3(75)/2014
It is necessary to say if the four
another analogous CHB C and C
+
m
tribution presented on Table 4 confi
for ammonium cation in ionic CHB
ionic complex C is equal q = +0.710
Figure 3 illustrates the experim
toluene mixtures of spin probe I with
a
Figure 3. EPR sp
of stable radical I and te
EPR spectra 3a present triple
tert.buthylortosemiquinone with ca
(a
H
= 0.335 mT) formed by hyperfin
tons of anion-radical 3,6-di-tert.bu-
ting on nucleus of nitrogens atom o
ionic pair of the protonated by hydro
1 Masalimov A.S., Kurmanova A.F., N
actions in solutions // Bull. of the Karaganda
2 Foresman J.B., Frish A. Exploring
Inc., 1996. — P. 302.
3 Young D.C. Computational Chemist
4 Hehre W.J., Radom L., Schleyer P.R
123 p.
5 Cook D.B. Handbook of computiona
6 Fischer Н. Rapid proton exchange o
0,5
Quantum
r-centered CHB B and B
+
are molecular intermed
must be the ionic intermediates. The character of
firms our assumption. For example: the value of c
B C
+
resulted as q = +0.847 and this value for p
0.
mental EPR spectra of the real short-lived particle
h different acids and bases at low temperatures [6
b
pectra of ionic pair С
+
and C obtained in toluene soluti
etrahydronicotine at 294 K ( a) and hydrochloric acid a
et of triplet and concern to contact ionic pair
ation of protonated molecule of tetrahydroni
ne interaction of unpaidred electron with 2 magn
-thylortosemiquinone and small triplet (a
N
= 0.03
f ammonium cation in contact ionic pair. The EP
ochloric acid semiquinone radical I.
References
Nikolskiy S.N., Ospanov A.U., Tur A.A. EPR spectroscopy o
a University. Series of chemistry. — 2014. — No. 1. — P. 3
Chemistry with Electronic Structures Methods. — Secon
try. — New York: Wiley&Sons, 2001. — 398 p.
R., Pople J.A. Ab-initio molecular orbital theory. — NY: Jo
al Quantum Chemistry. — NY: Dover Publications, Inc., 200
of the free radical CH
2
OH as studied by ESR // Mol. Phys. —
0,5
H, мТ
m-chemical investigation …
37
diates of IPE reaction the
f the atomic charges dis-
common positive charge
protonated oxymethyl in
es C
+
and C registered in
6].
ions
at 185 K ( b)
of anion-radical 3,6-di-
icotine. The big triplet
netic equivalent ring pro-
30 mT) formed by split-
PR spectra 3b concern to
of the fast proton exchange re-
30–35.
nd Ed.— Pittssburg: Gaussian
ohn Wiley and Sons, 1986. —
05. — 93 p.
— 1965. — Vol. 9. — P. 149.
H, мТ
A.S.Masalimov, S.N.Nikolskiy et al.
38
Вестник Карагандинского университета
A.С.Масалимов, С.Н.Никольский, E.A.Ральченко, И.A.Пустолайкина, A.A.Tур
Парамагнитті жүйелерде жылдам молекулааралық протондық
ауысу реакция механизмін кванттыхимиялық зерттеу
Мақалада қазіргі заманғы кванттыхимиялық эмпирикалық емес əдістермен молекулааралық
протондық ауысудың жылдам реакциясы механизмінің теориялық интепретациялау үшін оксиметил-
аммиак жүйесінде потенциалды энергияның беті зерттелді. Бұл жүйе нақты сұйықфазалы жүйелердегі
осындай реакциялардың тəжірибелік ЭПР-спектроскопиялық кинетикалық мəліметтердің үлгісі болып
табылады. Сутектік байланыс арқылы түзілген молекулалық жəне иондық төртцентрлі кешендердің аз
өмір сүретін интермедиаттардың рөлдері анықталды.
A.С.Масалимов, С.Н.Никольский, E.A.Ральченко, И.A.Пустолайкина, A.A.Tур
Квантовохимическое изучение механизма реакции быстрого
межмолекулярного протонного обмена в парамагнитных системах
В статье для теоретической интерпретации механизма быстрой реакции межмолекулярного протонно-
го обмена (IPE) неэмпирическими методами современной квантовой химии исследована поверхность
потенциальной энергии в свободно-радикальной кислотно-основной системе оксиметил – аммиак,
моделирующей экспериментальные ЭПР-спектроскопические кинетические данные для таковых ре-
акций в реальных жидкофазных системах. Установлены роли короткоживущих интермедиатов моле-
кулярных и ионных четырехцентровых комплексов за счет водородной связи в управлении протека-
нием быстрой IPE-реакции в парамагнитной кислотно-основной смеси.
Серия «Химия». № 3(75)/2014
39
ОРГАНИКАЛЫҚ ХИМИЯ
ОРГАНИЧЕСКАЯ ХИМИЯ
UDC 547.314
N.Merkhatuly
1
, S.B.Abeuova
1
, P.Vojtíšek
2
, A.T.Omarova
1
, L.T.Balmagambetova
1
1
E.A.Buketov Karaganda State University;
2
Charles University, Prague, Czech Republic
(E-mail: merhatuly@ya.ru)
Stereocontrolled synthesis of trans-eudesmanolides from (+)-hanphilline
Directed synthesis methods of practically significant eudesmanolides on the basis of germacranolide
E,E-hanphilline were presented in this article. Synthesis of obtained trans-eudesmanolides was carried out
with stereocontrolled 5,10-cyclization of E,E-germaсranolide (+)-hanphilline. The considered mechanism of
5,10-carbocyclization of the E,E-germaсranolide (+)-hanphilline consistent with the results of quantum-
chemical calculations of the total energies of all cationic intermediates formed during the reaction. It was
shown that electrophilic reagents led to different eudesmanolide sesquiterpenoids. The one-step synthetic
method of functionalized at С-1 and С-3 trans-eudesmanolides was developed.
Key words: sesquiterpene lactones, eudesmanolides, germacranolides, stereocontrolled synthesis, hanphilline,
cyclization, electrophilic reagents, quantum-chemical calculations.
Sesquiterpene γ-lactones, in particular trans-eudesmanolides and E,E-germacranolides, are widespread
in flowering plants of the family Asteraceae ( Acteraceae). They are valuable natural compounds for studying
various reactions and synthesis of new biologically active derivatives [1–3].
Stereocontrolled synthesis methods of eudesmanolides on the basis of germacranolide E,E-hanphilline
were presented in this work. Hanphilline is a characteristic component of the Noble Yarrow (Achillea
nobilis L.), which is widespread in Central Kazakhstan [4].
Interaction of hanphilline (1) with N-bromosuccinimide in aqueous acetone at temperature 25–30 ºC led
to formation of trans-condensed 5(α),10(β)-eudesmanolides (2) and (3) with 30 and 40 % yields. Synthesized
eudesmanolides are chiral diastereomers. Specific rotation of (2) is [
]
D
18
+ 50º (с 0,02; CHCl
3
) and specific
rotation of (3) is [
]
D
18
+ 46º (с 0,01; CHCl
3
). Apparently, reaction started with regiospesific electrophilic
bromation of the most electron-donor and space available double bond at С
1
–С
10
in molecule of
hanphilline (1). And then intramolecular 5,10-carbocyclization (Markovnikov's rule) with the assistance of
second skeletal Δ
4,5
-double bond (in the capacity of nucleophile) was initiated. In the end, an intermediate
1-bromeudesman cation (A) was formed:
HO
O
O
HO
O
O
H
Br
(A)
HO
O
O
Br
(1)
1
4
5
10
+
+
2
3
6
7
8
9
11
12
13
14
15
N.Merkhatuly, S.B.Abeuova et al.
40
Вестник Карагандинского университета
Further stabilization occurred through ejection of protons from the C-15 (Hofmann’s rule) and cleavage
of НBr from the С
1
-С
2
. It gave eudesman allyl alcohol (2). Nucleophilic attack of hydroxyl ion (or water)
with simultaneous β-dehydrobromation formed diol (3). Moreover, the cyclization was realized through low-
energy conformation of hanphilline (4) — chair–chair (Fig.1) with configuration
1
D
14
and
15
D
5
leading to the
formation of trans-condensed eudesmanolides.
1
H-NMR spectrum data of obtained compounds are shown in
Table 1.
Figure 1. The conformation of hanphilline — chair–chair
T a b l e 1
Chemical shifts (
, ppm), spin-spin interaction constants (in Hz)
of hanphilline and its derivatives (2) and (3)
Protons
Compounds
(1) (2)
(3)
Ме-4
1,68 broad singlet
–
1,26 singlet
Ме-10
1,43 singlet
0,9 singlet
0,94 singlet
Н-1
5,24 broad doublet (3)
5,28 doublet (11)
5,29 doublet (11)
Н-2
–
5,40 quartet (11;9)
5,41 quartet (11;9)
Н-3
4,90 broad doublet of doublets (10;5)
4,40 broad doublet (9)
4,45 doublet (9)
Н-5
4,86 broad doublet (8,5)
2,24 broad doublet (11)
2,18 doublet (11)
Н-6
4,12 quartet (10;8,5)
3,98 triplet (11)
4,21 triplet (11)
Н-13а
5,52 doublet (3,5)
5,40 doublet (3)
5,35 doublet (3)
Н-13b
6,26 doublet (3,5)
6,06 doublet (3)
6,14 doublet (3)
Н-15а – 5,25
doublet
(1) –
Н-15b –
5,90
doublet
(1) –
1
H NMR spectra of all obtained compounds were registered on a spectrometer Bruker Avance-400 (operating fre-
quency 400,13 MHz), solvent CDCl
3
, internal reference TMS.
Treatment of hanphilline (1) with formic acid at room temperature led to stereocontrolled products of
5,10-carbocyclization — optically active keto,hydroxy-5(α),10(β)-trans-eudesmanolides (5) and (6) with 68
and 20 % yields (Fig. 2). Reaction occurred more rapidly than with N-bromosuccinimide. Apparently, acid-
catalyzed 5,10-carbocyclization occurred by the same mechanism as with NBS through regiospesific proto-
nation of the most electron-donor and space available Δ
1,10
-double bond of hanphilline (1) with configuration
1
D
14
and
15
D
5
. Following nucleophilic attack of Δ
4,5
-double bond (Markovnikov's rule) led to only trans-
condensed eudesmanolides (5) and (6).
1
H-NMR spectrum data of obtained compounds are shown in Ta-
ble 2.
O
O
H
O
O
HO
(2)
(3)
HO
HO
H
H
H
H
H
1. H
+
-15
2. -HBr
1. H
2
O
2. -HBr
HO
O
O
(4)
Stereocontrolled synthesis of trans-eudesmanolides …
Серия «Химия». № 3(75)/2014
41
Figure 2. The obtaining of eudesmanolides (5) and (6)
T a b l e 2
Достарыңызбен бөлісу: |