Выпуклое программирование
Определение: Функция , заданная на выпуклом множестве X, называется выпуклой, если для любых двух точек и из X и любого выполняется соотношение
. (2)
Определение: Функция , заданная на выпуклом множестве X, называется вогнутой, если для любых двух точек и из X и любого выполняется соотношение
(3)
Если неравенства (2) и (3) считать строгими и они выполняются при , то функция является строго выпуклой (строго вогнутой). Выпуклость и вогнутость функций определяется только относительно выпуклых множеств.
Если , где , - выпуклые (вогнутые) функции на некотором выпуклом множестве , то функция f(x) - также выпуклая (вогнутая) на X.
Основные свойства выпуклых и вогнутых функций:
1. Множество точек минимума выпуклой функции, заданной на выпуклом множестве, - выпукло.
2. Пусть f(x) - выпуклая функция, заданная на замкнутом выпуклом множестве. Тогда локальный минимум f(x) на X является и глобальным.
3. Если глобальный минимум достигается в двух различных точках, то он достигается и в любой точке отрезка, соединяющего данные точки.
4. Если - строго выпуклая функция, то ее глобальный минимум на выпуклом множестве X достигается в единственной точке.
5. Пусть функция f(x) - выпуклая функция, заданная на выпуклом множестве X, и, кроме того, она непрерывна вместе со своими частными производными первого порядка во всех внутренних точках X. Пусть - точка, в которой . Тогда в точке достигается локальный минимум, совпадающий с глобальным минимумом.
6. Множество точек глобальных (следовательно, и локальных) минимумов выпуклой функции , заданной на ограниченном замкнутом выпуклом множестве X, включает хотя бы одну крайнюю точку; если множество локальных минимумов включает в себя хотя бы одну внутреннюю точку множества X, то является функцией-константой.
Достарыңызбен бөлісу: |