Ќазаќ мемлекеттік ќыздар педагогика институты


Бірқуысты гиперболоид (б.г.)



бет21/22
Дата30.08.2022
өлшемі1,16 Mb.
#38315
1   ...   14   15   16   17   18   19   20   21   22
Байланысты:
Ан.геом. ж не сыз. алгебра Лекция

2. Бірқуысты гиперболоид (б.г.)
(2)
(2)-теңдеу түрінен б.г. координаталық жазықтықтарға және координата бас нүктесіне салыстырғанда симметриялы бет екенін көреміз. а,b,с-сандары бірқуысты гиперболоидтың жарты остері деп аталады (20-сурет). Б.г.-тың (), () нүктелері оның төбелері деп аталады. (2) - беттің жазықтығымен қимасы

түріндегі эллипс.
Егер (2) - бет пен немесе жазықтығымен қисақ, онда қимаға сәйкес келесі гиперболаны аламыз:

және

Егер болса, онда бірінші гипербола келесі екі түзуге беттеседі:
Егер болса, онда гиперболаның нақты симметриялы оci Оу - ке параллель түзу, ал болса, Oz - ке параллель түзу болады.
Егер болмаса, онда (2)-бет пен жазықтықтарының қимасы, радиусі тең шеңбер, ал бұл жағдайда (2) - бет гиперболасының Oz осін айналуынан алады.

3. Гиперболалық параболоид.
(3)
(3)-теңдеуден берілген бет жазықтықтарымен салыстырғанда симметриялы екенін көреміз. (3) - беттің жазықтығымен қимасы

түріндегі гипербола және болса, гиперболаның нақты симметрия оci Ox - осіне параллель, ал болса, Oy - осіне параллель болады. болса, қимада қиылысатын екі түзу шығады.
(3) - беттің немесе жазықтықтарымен қимасы тармақтары сәйкес төмен немесе жоғары бағытталған парабола болады (21-cypeт).


4. Екінші peттi конус
(4)
(4) - бет жазықтықтарына және координата басына салыстырғанда симметриялы екені түсінікті. (4) - жазықтығымен қимасы - эллипстер:

Егер (4)- бетті немесе жазықтықтарымен қисақ, онда қимада сәйкес

гиперболалары алынады (22 -сурет).
Егер (4)- бетті жазықтықтарымен қисақ, онда қимада қиылысатын түзулер жұбын аламыз:






Достарыңызбен бөлісу:
1   ...   14   15   16   17   18   19   20   21   22




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет