ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
475
8
Holscher M., Gurtler C., Keim W., Muller T.E., Peters M., Leitner W. Carbon Dioxide
as a Carbon Resource - Recent Trends and Perspectives // Zeitscrift fur nuturforscung / section
B-A journal of chemical sciences. – 2012. Vol.67, Is.10. – P.961-975.
9
Liu A.H., Yu B., He L.N. Catalytic conversion of carbon dioxide to carboxylic acid
derivatives // Greenhouse Gases-Science and Technology. – 2015. Vol. 5, Is. 1. – P. 17-33.
10
Suerbaev Kh.A., Chepaikin E.G., Kanapieva F.M., Seitenova G.Zh. Carboxylation of
organic compounds with metal alkyl carbonates (review) // Petrol. Chem. – 2009. Vol.49, Is.4. –
P.265-273.
11
Taketoshi Kito, Ichiro Hirao. Carboxylation of phenol Derivativеs.XX. Syntheses of
Phenolpolicarboxylic Acids dy the Cardoxylation of Alkali Phenoxid in the Presence of Alkali
Alkyl Carbonate // Bull.Chem.Soc.Japan. – 1971. – Vol.44. №11. – P.3123-3126.
12
Umemura Sumio, Takamitsu Nagaaki, Hashimoto Toshiaki. 2,5-Dihydroxybenzoic
acid. Japan. Kokai 7795,627 (c 07 c 65/02). Chem.Abstr. 1987.88.374383s.
13
Suerbaev Kh.A., Mikhnenko O.E., Akhmetova G.B., Shalmagambetov K.M.,
Chepaikin E.G. Phenol carboxylation with alkali metal salts of ethyl carbonic acid // Petrol.
Chem. – 2005. Vol. 45, №1. – P. 41-43.
14
Suerbaev Kh.A., Mikhnenko O.E., Akhmetova G.B., Shalmagambetov K.M.,
Chepaikin E.G. Carboxylation of naphthols with sodium ethyl carbonate // Petrol. Chem. – 2005.
Vol.45, №5. – P.335-337.
15
Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford University
Press, New York, 1998, Р. 30.
16
Pelle Lidstrom, Jason Tierney, Bernard Wathey, Jacob Westman. Microwave assisted
organic synthesis - a review // Tetrahedron. – 2001. - № 57. - Р 9225-9283.
17
Nuchter M., Ordruchka B., Bonrath W., Gum A. Microwave assisted synthesis - a
critical technology overview // Green Chem. – 2004, Vol.6. – P.128-141.
18
Бердоносов С. С., Бердоносова Д.Г., Знаменская И. В. Микроволновое излучение
в химической практике // Хим. технология. – 2000. – №3. – С. 2–8.
19
Suerbaev Kh.A., Akhmetova G.B., Shalmagambetov K.M. Carboxylation of Phenol
with Potassium Ethyl Carbonate. A New Method of Synthesis of p-Hydroxybenzoic Acid //
Russ. J. Gener. Chem. -2005. –Vol.75, №9. -P.1498-1499.
20
Suerbaev Kh.A., Chepaikin E.G., Kudaibergenov N.Zh., Zhaksylikova G.Zh.
Synthesis of Cresotic Acids by Carboxylation of Cresols // Petrol. Chem. – 2016. Vol. 56, – P.
414-418.
21
Свойства органических соединений. Справочник. Под ред. Потехина А.А.. – Л.:
Химия, 1984. - 520 с.
References
1
Brel A.K., Lisina S.V., Budaeva Yu.N. (2015) Russ. J. Gen. Chem. 85(2):387-391.
DOI: 10.1134/S1070363215020073.
2
Cashman
A.L.,
Warshaw
E.M.
(2005)
Dermatitis.
16(2):57-66.
DOI:
10.2310/6620.2005.05008.
3
Farhoosh R., Johnny S., Asnaashari M., Molaahmadibahraseman N., Sharif A. (2016)
Food Chemistry. 194:128-134. DOI: 10.1016/j.foodchem.2015.08.003.
4
Koroleva O., Torkova A., Nikolaev I., Khrameeva E., Fedorova T., Tsentalovich M.,
Amarowicz R. (2014) Int. J. Mol. Sci. 15(9):16351-16380. DOI: 10.3390/ijms150916351.
5
Dong D., Jiang Sh., Ni Yu., Jiang B. (2001) Eur. Polym. J. 37:611-617. DOI:
10.1016/S0014-3057(00)00123-3.
6
Aresta M. Carbon Dioxide: Recovery and Utilization; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 2003, 408р.
7
Riduan S.N., Zhang Y.G. (2010) Dalton Transactions. 39(14):3347-3357. DOI:
10.1039/b920163g.
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
476
8
Holscher M., Gurtler C., Keim W., Muller T.E., Peters M., Leitner W. (2012)
Zeitscrift fur nuturforscung / section B-A journal of chemical sciences. 67(10):961-975. DOI:
10.5560/ZNB.2012-0219
9
Liu A.H., Yu B., He L.N. (2015) Greenhouse Gases-Science and Technology. 5(1).
17-33. DOI: 10.1002/ghg.1461.
10
Suerbaev Kh.A., Chepaikin E.G., Kanapieva F.M., Seitenova G.Zh. (2009) Petrol.
Chem. 49(4):265-273. DOI: 10.1134/S096554410904001X.
11
Kito T., Hirao I. Bull. Chem. Soc. Jap. 1971, 44 (11), 3123-3126.
12
Umemura Sumio, Takamitsu Nagaaki, Hashimoto Toshiaki. 2,5-Dihydroxybenzoic
acid. Japan. Kokai 7795,627 (c 07 c 65/02). (1987) Chem.Abstr. 88.374383s.
13
Suerbaev Kh.A., Mikhnenko O.E., Akhmetova G.B., Shalmagambetov K.M.,
Chepaikin E.G. (2005) Petrol. Chem. 45(1):41-43.
14
Suerbaev Kh.A., Mikhnenko O.E., Akhmetova G.B., Shalmagambetov K.M.,
Chepaikin E.G. (2005) Petrol. Chem. 45(5):335-337.
15
Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford University
Press, New York, 1998, Р. 30.
16
Pelle Lidstrom, Jason Tierney, Bernard Wathey, Jacob Westman. (2001) Tetrahedron.
57:9225-9283. DOI: 10.1016/S0040-4020(01)00906-1.
17
Nuchter M., Ordruchka B., Bonrath W., Gum A. (2004) Green Chem. 6:128-141.
DOI: 10.1039/b310502d.
18
Berdonosov S.S., Berdonosova D.G., Znamenskaya I.V. (2000) Chem. technology.
3:2-8. (in Russ.).
19
Suerbaev Kh.A., Akhmetova G.B., Shalmagambetov K.M. (2005) Russ. J. Gener.
Chem. 75(9):1498-1499.
20
Suerbaev Kh.A., Chepaikin E.G., Kudaibergenov N.Zh., Zhaksylikova G.Zh (2016)
Petrol. Chem. 56:414-418. DOI: 10.1134/S0965544116070161.
21
Properties of organic compounds [Svoistva organicheskih soedinenii]. Directory. Ed
by Potehin A.A. L.: Himija, 1984, 520 p. (in Russ.).
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
477
УДК 615.4-620.3
Mussabayeva B.Kh.
*
, Murzagulova K.B., Kasymova Zh.S.,
Orazzhanova L.K., Iminova D.E.
Shakarim State University of Semey, Semey, Kazakhstan
*E-mail: binur.mussabayeva@mail.ru
Biopolymers and polyelectrolytic multilayers as drug delivery system
The co-encapsulation of oral antitubercular drugs (ATDs) pyrazinamide and moxifloxacin
by polyelectrolytic multilayers with use as a matrix of gellan is carried out. The co-encapsulation
efficiency and in vitro drug release were studied. It is shown that capsules possess prolonged
action.
Keywords: antitubercular drugs, capsule, biopolymers, polyelectrolytic multilayers,
controlled release
Мұсабаева Б.Х., Мұрзағұлова К.Б., Қасымова Ж.С.,
Оразжанова Л.К., Иминова Д.Е.
Шәкәрім атындағы Семей мемлекеттік университеті, Семей қ., Қазақстан
Биополимерлер мен полиэлектролиттер дәрілерді жеткізу жүйесі ретінде
Пероральды туберкулезге қарсы перпараттар (ТҚП) пиразинамид және
моксифлоксацинді
матрица
ретінде
геллан
пайдаланып
полиэлектролитті
мультиқабаттармен бірге капсулалау жүргізілді. Препараттарды капсулаға енгізу
тиімділігі және капсулалардан босап шығуы in vitro зерттелді. Капсулалардың әсері ұзақ
екені көрсетілді.
Кілт сөздер: туберкулезге қарсы препараттар, капсула, биополимерлер,
полиэлектролитті мультиқабаттар, бақыланатын босап шығу
Мусабаева Б.Х., Мурзагулова К.Б., Касымова Ж.С.,
Оразжанова Л.К., Иминова Д.Е.
Государственный университет им. Шакарима города Семей, г. Семей, Казахстан
Биополимеры и полиэлектролиты как система доставки лекарств
Проведено совместное капсулирование пероральных противотуберкулезных
препаратов (ПТП) пиразинамида и моксифлоксацина полиэлектролитными мультислоями
с использованием в качестве матрицы геллана. Изучены эффективность включения
препаратов в капсулы и in vitro высвобождение препаратов. Показано, что капсулы
обладают пролонгированным действием.
Ключевые слова: противотуберкулезные препараты, капсула, биополимеры,
полиэлектролитные мультислои, контролируемое высвобождение
Introduction
Prolongation of antitubercular drug
,
s action is the actual problem [1]. For these purpose
the various drug delivery systems (DDS) have been used: microparticles, nanoparticles,
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
478
liposomes, polymeric composites, the hollow and filled capsules. In the literature there is a lot of
works devoted to use of biopolymers as DDS [2-3]. However, there are very few literary data on
encapsulation of antitubercular drugs by polyelectrolytic multilayers. For example, rifampicin
encapsulated into chitosan-dextran sulfate hollow microcapsules. Rifampicin released from these
microcapsules within over 72 hours at pH=1.2 and pH=7.4 [4].
The goal of this work are co-encapsulation of two antitubercular drugs – pyrazinamide and
moxifloxacin in the gellan coated with polyelectrolytic multilayers, and evaluation of drug
release at values рН, modeling various sites of a gastrointestinal tract (GIT).
Experimental part
The biopolymer low-acetylated gellan (China producted) were used as the container for
capsules. For preparation multilayers cationic polyelectrolyte chitosan (Chit) water-soluble, ≥
8000 Da (Bioprogress, Moscow), anionic polyelectrolytes sodium dextran sulphate (DS), 500
kDa (Sigma-Aldrich) and Eudragit S100 (Eud) were chosen.
Substances of antitubercular drugs pyrazinamide (Pz), Shanghai International
Pharmaceutical Co producted, a moxifloxacin hydrochloride (Mfx), Pavlodar Pharmaceutical
Plant, Kazakhstan producted were used.
Drug containing capsules were prepared by ionotropic gelation method [5]. The co-
encapsulation efficiency was determined by Pharmacopoeia methods: pyrazinamide and
moxifloxacin quantity were determined on the spectrophotometer (Specord 210, Germany) at
268 nm and 295 nm [6].
The coating of capsules by polyelectrolytic multilayers was carried out by LbL-technique
(Layer by layer deposition), consistently immersing them in water solution of a chitosan and in
dextran sulphate (Eudragit S100) solution in sodium chloride. After immersion in each
polyelectrolyte capsules twice washed distilled water. This procedure was repeated by 3, 5 or 10
times. Thus, 3, 5 or 10 bilayers of oppositely charged polyelectrolytes have been formed.
In vitro drug release studies carried out according to Pharmacopoeia requirements [6],
using the dissolution apparatus (Erweka, Germany) at temperature (37 ± 0.5) ºС and the rotation
speed 100 rpm. The tests were performed at gastric pH (0.1N HCl, pH=1.2) and intestinal pH
(phosphate buffer, pH=7.4). Pyrazinamide, moxifloxacin concentration were determined by UV-
Visible spectrophotometric method at 268 and 295 nm. All quantitative analyses were repeated 3
times.
Results and discussion
Drug containing spherical capsules of size around of 1,5-2,0 mm were prepared. Capsules
were kept within 10 min in calcium salt solution, then passed through a sieve and washed twice
in the distilled water and dried on air at the room temperature. The solution was used for
determination of co-encapsulation efficiency.
Results of co-encapsulation efficiency determination are given in tab. 1.
Table 1 – Co-encapsulation efficiency (%)
Capsule matrix
pyrazinamide
moxifloxacin
1% gellan
27,5±1,3
27,6±10,6
3% gellan
39,9±4,2
41,8±2,2
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
479
Apparently from tab. 1, generally co-encapsulation efficiency increases with the increase
of gellan concentration. It is interesting that co-encapsulation efficiency of drugs is higher, than
separately encapsulation efficiency of them [5].
In vitro drug release studies shown, that in acidic environment at рН =1,2 (corresponds to
the gastric) capsules were not dissolved within a day.
At рН =6,8 (corresponds to intestines) capsules are gradually dissolved (tab.2).
Table 2 – Drug release from capsules at рН=6,8, %
Composition of capsule
Release time,
hour
Extent of release, %
pyrazinamide
moxifloxacin
3% gellan/Pz/Мfx
(without multilayers)
4
34,6±4,8
34,7±4,5
8
54,8±4,5
49,4±1,1
12
81,2±2,3
84,2±1,2
3% gellan/Pz/Мfx +
3 bilayers Chit/DS
6
30,3±1,5
30,3±1,2
12
49,3±3,6
51,2±1,9
18
88,3±3,8
78,3±3,7
3% gellan/Pz/Мfx +
5 bilayers Chit/DS
12
29,9±1,0
30,5±1,5
18
46,7±3,8
50,9±1,5
24
78,1±8,2
80,5±2,2
3% gellan/Pz/Мfx +
3 bilayers Chit/Eud
6
25,9±0,9
27,0±1,2
12
48,6±1,9
49,5±0,6
18
80,5±1,3
78,3±3,9
3% gellan/Pz/Мfx +
5 bilayers Chit/Eud
12
26,3±1,9
26,4±7,5
18
45,8±0,7
46,5±1,3
24
75,6±0,5
75,2±1,9
3% gellan/Pz/Мfx +
10 bilayers Chit/Eud
12
-
-
18
-
-
24
13,3±3,3
10,4±1,8
Apparently from the tab. 2 release (%) of pyrazinamide and moxifloxacin from combined
capsules without polyelectrolytic multilayers in 4 hours about 30% of the active substance, in 8
clocks – about 50%, for 12 – about 80%. Thus, prolongation made 12 clocks.
In case of the microcapsules covered with 3 polyelectrolytic bilayers more prolonged
release was observed: in 6 clocks 30% of the active substance, in 12 clocks – 50%, in 18 clocks –
80% are released. In this case prolongation made 18 clocks, i.e. is 1,5 times more longer, than
without multilayers.
In case the covering made 5 bilayers prolongation is higher: in 12 clocks released 30% of
the active substance, in 18 clocks – 50%, in 24 clocks – 80% are released. In this case
prolongation made 24 hours. Capsules with 10 bilayers of polyelectrolytes begin to be dissolved
after 20 clocks, in 24 hours only about 10% of the active substance are released.
Conclusions
Thus, co-encapsulation of ATDs pyrazinamide and moxifloxacin by biopolymer and
polyelectrolytic multilayers was carried out for the first time. The safe biodegradable and
biocompatible polymers were used for co-encapsulation.
Co-encapsulation was performed in aqueous solutions at room temperature without costly
or special apparatus, polyelectrolyte multilayers were coated by LbL-technique.
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
480
It is shown that polyelectrolytic co-encapsulation allows to prepare of the prolonged form
of the combined ATDs for oral use. It is enough 5 bilayers of polyelectrolytes to achieve the 24th
hour prolongation of drugs.
Acknowledgements
This study was performed with the financial support of the Ministry of Education and
Science of the Republic of Kazakhstan, grant №0794/ GF4.
References
1 WHO Global tuberculosis report 2015: http://who.int/tb/publications
2 Muthu Mohamed, S. Vetriselvan, Narra Kishore Yadav, MD Raja, C Senthil Kumar, M.
Mohamed Raffick, M. Vignesh, K. Selvakumar, J. Joysa Ruby, V. Parkavi. Preparation and
evaluation of alginate / chitosan particulate system for rifampicin release // International Journal
of Pharmacy & Therapeutics. 2012.V. 3(2). P. 215-220.
3 P. Sabitha, J. Vijaya Ratna and K. Ravindra Reddy. Design and evaluation of controlled
release chitosan-calcium alginate microcapsules of antitubercular drugs for oral use //
Int. J.
Chem. Technol. Res. 2010. V.2. P. 88-98.
4 Devi, M. G., Dutta, S., Al Hinai, A. T., & Feroz, S. (2015). Studies on encapsulation of
Rifampicin and its release from chitosan-dextran sulfate capsules // Korean Journal of
Chemical Engineering. 2015. V. 32(1). P.118-124.
5 Mussabayeva B., Murzagulova K., Izumrudov V., Iminova D., Orazzhanova L.,
Kasymova Zh., Kasenova N. Encapsulation of Antitubercular Drugs by Biopolymers and
Polyelectrolyte Multilayers // Res. J. of Pharm., Biol. and Chem. Sc. 2016. V. 7 (5).-P. 2951-
2955.
6 State Pharmacopeia of the Republic of Kazakhstan. V.2. — Almaty: Zhibek zholy.
2009. 804 p.
ХИМИЯ ЖӘНЕ ХИМИЯЛЫҚ ТЕХНОЛОГИЯ БОЙЫНША IX ХАЛЫҚАРАЛЫҚ БІРІМЖАНОВ СЪЕЗІНІҢ ЕҢБЕКТЕРІ
481
Nurlanova A.E.*, Karipullayeva A.S., Alikulov A.Zh., Toktabayeva A.K., Mun G.A.
Al-Farabi Kazakh National University, Almaty, Kazakhstan
*E-mail: aray.yerikovna@gmail.com
Preparation, characterization and modification of copolymers based on N-(2-
vinyloxyethyl)-N-(2-cyanoethyl) amine
In this study a new copolymers based on N-(2-vіnуlоxуеthyl)-N-(2-cуanоеthyl) amine
(VOECEA) and N-isopropylacrylamide (NIPAAm) were prepared by radical copolymerization
using azobisisobutyronitrile as an initiator in ethanol solution at 60°C. The structures of obtained
copolymers were characterized using FT-IR and thermal analysis. The modification of nitrile
groups presented in feed copolymer сompositions was carried out in methanol solution of
NH
2
OH HCl – NaOH at 80°C. The structure of modified copolymers was characterized by FT-
IR spectrophotometer.
Keywords: N-isорrорylacrуlamide (NІРAАm), N-(2-vіnуlоxуеthyl)-N-(2-cуanоеthyl)
amine (VOECEA), modification of functional groups, amidoximation, water purification, FT-IR,
TGA.
Нурланова А.Е., Карипуллаева А.С., Аликулов А.Ж., Тоқтабаева А.Қ., Мун Г.А.
Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы қ., Қазақстан
N-(2-винилoксиэтил)-N-(2-циaнoэтил) амин негізіндегі сополимерлерді алу, зерттеу
және модифицирлеу
Бұл жұмыста N-(2-винилoксиэтил)-N-(2-циaнoэтил) амин (ВОЭЦЭА) және N-
изoпpoпилaкрилaмид
(НИПAAм)
негізіндегі
жаңа
сополимерлер
радикалды
сополимерлену арқылы инициатор ретінде азобисизобутиронитрил қатысында спирттік
ерітіндіде 60ºC тeмпeрaтурaдa алынды. Алынған сополимерлердің құрылысы FT-IR
спектрометрінде және физика-химиялық қасиеттері термогравиметриялық анализдер
арқылы зерттелді. Алынған сополимерлерді модифицирлеу NH
2
OH HCl – NaOH спирттік
ерітіндісінде 80°C температурада жүргізілді. Модифицирленген сополимерлердің
құрылысы FT-IR спектрометрінде зерттелді.
Түйін сөздер: N-изoпpoпилaкpилaмид (HИПААм), N-(2-винилоксиэтил)-N-(2-
цианоэтил) амин (ВОЭЦЭА), функционалды топтарды модифицирлеу, амидоксирлеу,
суды тазалау, FT-IR, ТГА.
Достарыңызбен бөлісу: |