Гылыми журналы многопрофильный научный журнал



Pdf көрінісі
бет51/52
Дата11.01.2017
өлшемі6,69 Mb.
#1621
1   ...   44   45   46   47   48   49   50   51   52

Рисунок 2 
-  
Учет инерционности в срабатывании двигателей, 
c
05
,
0


 
 
Соответствующая  система  уравнений  за
-
пишется в виде
 
 























,
/
/
,
/
/
),
(
)
)(
1
(
,
2
2
2
1
1
1
1
2
1
2
2
22
1
21
2
2
1




u
k
P
P
u
k
P
P
t
F
P
P
b
x
a
x
a
x
x
x




 
                (6) 

ТЕХНИЧЕСКИЕ НАУКИ И ТЕХНОЛОГИИ
 
 
249 
где  управления 
2
1
u
u
находятся  по  усло
-
виям (4).
 
Задача.
 
Синтезировать  разрывное  управление 
u
 
с 
инвариантностью  в  начале  координат  для  сис
-
темы (6) с  учетом  инерционностей  двигателей и 
провести  сопоставление  разрывного  управле
-
ния,  полученного  для  системы  (6),  с  линейным 
управлением,  оптимальным  по  минимуму  интег
-
рала  от  квадрата  ошибки  [7]  при  наличии  и 
отсутствии возмущений.
 
Для  матричной  записи  (1)  системы  (6) 
получаем
.
F
F

ΔD
D
b
t
b
(t)
b
a
a
t
A
t
A
1
0
2
0
22
21
0
0
 
,
1
0
 
,
0
  
)
(
,
1
0
 
,
 
 
0
       
0
  
)
(
 
,
0
 
0
1
 
0
)
(
































 
          (7) 
Синтез  управления  проведем  по  методу, 
изложенному  в  [9].  Получим  функции  переклю
-
чения в виде:
 
,
2
1
1
2
2
1
1
2
1
x
g

x
s

x
x
s

s
s
x
c
s
T







 
          (8) 
где
 
),
,
2
(
)
,
(
)
(
1
2
1
2
1
2
2
1
1
s
sign
s
sign
s
sign
c
c
s
sign
c
s
sign
c
c
T
T
T





 
в  системе  управления  (6)  получаем 
разрывное управление 
u
 
u

0
u
+

u
+
F
u

          (9) 
со слагаемыми 
0
u


u

F
u
 
вида:
 


























0,
 
 
)
2
(
1
0,
 
 
)
2
(
1
2
2
1
-
1
-
0
0
2
2
1
1
0
0
0
sg
при
x
s
sign
s
sign
s
x
b
c
u
sg
при
x
s
sign
s
sign
s
x
b
c
u
u
s
g
T
s
g
T




 
        (10) 
где  
;
5
,
1
,
1
,
-
1
0









s
g
g
T
s
sign
b
c



 





2
1
0
,
1
i
i
i
T
x
b
c
u

 
        (11) 

























,
2
,
1
,
0
 
))
1
/(
(
sup
,
0
 
))
1
/(
(
inf
,
-
,
i
x
при 
a
 x
при
a
i
i
a
i
i
i
a
i
i
i
i







 
        (12) 




;
)
2
(
2
1
),
,
0
(
),
(
,
)
2
(
1
),
,
0
(
),
(
1
2
2
1
1
1
02
22
2
02
0
2
2
2
1
1
01
21
1
01
0
1
1
s
sign
s
sign
s
sign
s
sign
s
sign
s
sign
K
a
A
K
b
A
c
a
s
sign
s
sign
s
sign
K
a
A
K
b
A
c
a
s
s
T
T
s
g
T
T





































 
 
раскрывая  условия  (12)  для  нахождения 


i

, получаем неравенства
 








.
1
))
/
(
2
(
sup
,
1
))
/
(
2
(
inf
,
1
)
2
(
sup
,
1
)
2
(
inf
1
2
22
1
,
,
,
-
2
1
2
22
1
,
,
,
2
2
1
1
21
,
,
,
,
-
1
2
1
1
21
,
,
,
,
1
1
s
22
1
s
22
s
g
21
s
g
21








































































































s
s
sign
a
s
sign
s
s
sign
a
s
sign
s
sign
s
sign
s
sign
a
s
sign
s
sign
s
sign
a
s
signs
a
s
signs
a
s
g
sign
a
s
g
sign
a
            
(13) 
 
С  учетом  ограничений  и  значений  (10) 
параметров 


s
g


,
 
в 
неравенствах 
(13) 
задаются  следующие  значения  параметров 
:
2
,
1
,



i
i

 
;
03
.
8
,
03
.
8
;
03
.
8
,
03
.
8
-
2
2
-
1
1
















 
        (14) 
,
/
1
1
1
1
0
s
sign
b
c
u
F
F
T
F




 
        (15) 
где   












1
inf
1
1
,
,
1
1
s
sign
F
sign
F
F
 
и  учтено,  что 
0


D
;  с  учетом  ограничений  для 
1
F
 
и 

 
задается значение 

1F
 
01
,
2
1


F

 
(при 
0


 
получаем
)
5
,
1
 
1


F


Проведем сопоставление полученного раз
-
рывного  управления  (10),  (11),  (15)  и  линейного 
управления,  оптимального  по  минимуму  интег
-
рала от квадрата ошибки [7], для системы (6) от
-
дельно  при  отсутствии  и  наличии  внешних  воз
-
мущений  при  одинаковом  времени  переходного 
процесса,  равном  1,6  с.  Моделирование  систем 
проведем в пакете 
MATLAB. 
На рис. 3 –
 
10 показаны процессы для но
-
минальной  системы  при  линейном  управлении 
(рис.  3  –
 
6)  и  разрывном  управлении  в  скользя
-
щем  режиме  (рис.  7  –
 
10).  Сопоставление  про
-
цессов  управления  по  координате  ошибки,  уп
-
равлению  и  энергетическим  затратам  показало 
при одинаковом времени переходного процесса, 
равном  1,6  с,  и  нулевых  установившихся  ошиб
-
ках  следующие  преимущества  разрывного  уп
-
равления  в  режиме  скольжения  по  сравнению  с 
линейным  управлением,  оптимальным  по  мини
-
муму интеграла от квадрата ошибки [7]: нулевое 
перерегулирование  по  сравнению  с  перерегули
-
рованием  в  18%;  число  колебаний  равное  нулю 
по  сравнению  с  одним;  максимальное  значение 
управления  по  модулю  на  40,31%  меньше,  чем 
линейного;  энергетические  затраты,  характери
-
зуемые  интегралом  от  модуля  управления  за 
время  переходного  процесса,  меньшие  на 
69,98% по сравнению с затратами при линейном 
управлении.
 

ТЕХНИКАЛЫҚ ҒЫЛЫМДАР ЖӘНЕ ТЕХНОЛОГИЯЛАР 
 
 
250 
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
-2
-1.5
-1
-0.5
0
0.5
x1
x2
 
Рисунок 3
-
Фазовый портрет при линейном 
управлении для номинальной системы
 
0
1
2
3
4
5
6
7
8
9
10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
t
x1
 
Рисунок 4

Процесс управления по отклонению 
угла тангажа 
1
x
, рад при линейном управлении 
для номинальной системы
 
0
1
2
3
4
5
6
7
8
9
10
-12
-10
-8
-6
-4
-2
0
2
4
t
u
 
Рисунок 5
-
Процесс изменения сигнала 
линейного управления 
u
, В тягой 
реактивных двигателей для номинальной 
системы
 
0
1
2
3
4
5
6
7
8
9
10
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
t
E
 
Рисунок 6

Энергетические затраты, 
характеризуемые интегралом от модуля 
линейного управления, для номинальной 
системы
 
 
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
x1
x2
 
Рисунок 7

Фазовый портрет при разрывном 
управлении для номинальной системы
 
0
1
2
3
4
5
6
7
8
9
10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
t
x1
 
Рисунок 8
-
Процесс управления по 
отклонению угла тангажа 
1
x
, рад при 
разрывном управлении для номинальной 
системы
 
0
1
2
3
4
5
6
7
8
9
10
-6
-4
-2
0
2
4
6
t
u
 
Рисунок 9
-
Процесс изменения сигнала 
разрывного управления 
u
, В тягой 
реактивных двигателей для номинальной 
системы
 
0
1
2
3
4
5
6
7
8
9
10
0
0.5
1
1.5
2
2.5
3
t
E
 
Рисунок 10 

Энергетические затраты, 
характеризуемые интегралом от модуля 
разрывного управления, для номинальной 
системы
 
 
Таким  образом,  результаты  моделиро
-
вания системы управления КЛА с предлагаемым 
разрывным управлением показывают требуемые 
прямые  показатели  качества.  При  более  точной 
модели  углового  движения,  получаемой  без  до
-
пущений  относительно  координат  движения 
центра  масс  и  с  учетом  соответствующих  чис
-
ловых данных по параметрам и по возмущениям, 
полученные  результаты  могут  быть  достаточно 
эффективно  применены  и  в  качестве  бортовых 
алгоритмов управления. В частности, в управле
-
нии движением возвращаемых в атмосфере КЛА 
различных  компоновок  и  других  летательных 
аппаратов,  а  также  для  управления  и  другими 
динамическими  объектами,  в  условиях  неоп
-
ределенных  возмущений,  не  удовлетворяющих 
известным  условиям  инвариантности  к  ним 
скользящих режимов на переходных процессах.
 

ТЕХНИЧЕСКИЕ НАУКИ И ТЕХНОЛОГИИ
 
 
251 
Литература:
 
1. 
Андреевский  В.В.  Динамика  спуска  кос
-
мических  аппаратов  на  Землю.  М.  Машино
-
строение, 1970. 232 с.
 
2. 
Барбашин  Е.А.  Введение  в  теорию  ус
-
тойчивости. М.: Наука, 1967. 224 с.
 
3. 
Боднер  В.А.  Теория  автоматического 
управления полетом. М.: Наука, 1964. 700 с.
 
4. 
Емельянов  С.В.  Системы  автоматичес
-
кого  управления  с  переменной  структурой.  М.: 
Наука,  1967. 336 с.
 
5. 
Емельянов С.В., Коровин С.К. Новые ти
-
пы  обратной  связи:  управление  при  неопре
-
деленности. М.: Наука. Физматлит, 1997. 352 с.
 
6. 
Зотеев  А.И.  Синтез  систем  с  перемен
-
ной структурой. I // Труды КАИ. вып. 121, 1970; II. 
Труды КАИ. вып.117, 1970.
 
7. 
Кузовков  Н.Т.  Модальное  управление  и 
наблюдающие устройства. М.: Машиностроение, 
1976. 184 с.
 
8. 
Лебедев  А.А.,  Герасюта  Н.Ф.  Баллис
-
тика ракет. М.: Машиностроение, 1970. 244 с.
 
9. 
Мещанов  А.С.,  Севрюгин  С.Ю.  Метод 
управления  с  гарантированной  терминальной 
инвариантностью  к  неопределенным  и  номина
-
льным  возмущениям  //  Вестник  КГТУ  им.  А.Н. 
Туполева, 2010. №3. С. 196 –
 203. 
10. 
Мещанов А.С., Севрюгин С.Ю. Управ
-
ление с терминальной инвариантностью к возму
-
щениям  и  минимальными  энергетическими  за
-
тратами, стабилизация полета КЛА в атмосфере 
// Вестник КГТУ им. А.Н. Туполева, 2010. №4. С. 
183 

 191. 
11. 
Остославский  И.В.,  Стражева  И.В. 
Динамика полета. Траектории летательных аппа
-
ратов. М.: Машиностроение, 1969. 500 с.
 
12. 
Теория систем с переменной структу
-
рой. / Под ред. С.В.Емельянова. М.: Наука, 1970. 
592 с.
 
13. 
Уткин В.И. Скользящие режимы в за
-
дачах  оптимизации  и  управления.  М.:  Наука, 
1981. 368 
с.
 
14. 
Уткин  В.И.  Скользящие  режимы  и  их 
применение  в  системах  с  переменной  струк
-
турой. М.: Наука, 1974. 272 с.
 
 
References
1. St. Andrew V. The dynamics of the descent 
of  spacecraft  to  Earth.  M  .:  Engineering,  1970.  232 
p. 
2.  Barbashin  E  Introduction  to  the  theory  of 
stability. M .: Nauka, 1967. 224 p. 
3.  V  Bodner  The  theory  of  automatic  flight 
control. M .: Nauka, 1964. 700 p. 
4.  S  Emelyanov  Automatic  control  system 
with variable structure. M .: Nauka, 1967. 336 p. 
5.  Emelyanov  S,  S  Korovin  New  types  of 
feedback:  management  under  uncertainty.  M  .: 
Nauka. FIZMATLIT, 1997. 352 p. 
6.  A  Zoteev  Synthesis  of  systems  with  vari-
able  structure.  I  //  Proceedings  of  KAI.  vol.  121, 
1970; II. Proceedings of KAI. vyp.117, 1970. 
7.  Kuzovkov  N  Modal  control  and  monitored 
devices. M .: Engineering, 1976. 184 p. 
8.  A  Lebedev,  Gerasyuta  NF  Ballistics  missi-
les. M .: Engineering, 1970. 244 p. 
9.  Meshchanov  A,  Sevryugin  S  Control  me-
thod  with  guaranteed  end-invariance  of  uncertainty 
and  nominal  disturbances  //  Bulletin  of  KSTU.  AN 
Tupolev, 2010. №3. S. 196 
- 203. 
10.  Meshchanov  A,  Sevryugin  S  Control 
terminal  invariance  to  perturbations  and  minimal 
energy  consumption,  the  stabilization  of  the 
spacecraft  flight  in  the  atmosphere  //  Bulletin  of 
KSTU. AN Tupolev, 2010. №4. S. 183 
- 191. 
11.  Ostoslavsky  I,  I  Strazheva  Flight  dyna-
mics. The trajectory of the aircraft. M .: Engineering, 
1969. 500 p. 
12. The theory of variable structure systems. / 
Ed. S.Emelyanova. M .: Nauka, 1970. 592 p. 
13. Utkin V Sliding modes in problems of opti-
mization and control. M .: Nauka, 1981. 368 p. 
14.  Utkin  V  Sliding  modes  and  their  applica-
tion  in  systems  with  variable  structure.  M  .:  Nauka, 
1974. 272 p. 
 
Сведения об авторах:
 
Севрюгин Сергей Юрьевич –
 
кандидат технических наук, старший преподаватель
 
кафедры 
Приборостроение,  Чистопольский  филиал  «Восток»  Казанского  национального  исследовательс
-
кого технического университета им. А.Н. Туполева
-
КАИ, РФ, г. Чистополь, тел. 8 (84342) 5
-69-42; 
контактный e
-mail: psgr@mail.ru 
Кошкин Игорь Владимирович 

кандидат технических наук, доцент кафедры электроэнерге
-
тики и физики, Костанайский государственный университет имени А.Байтурсынова, г. Костанай, 
ул. Абая, 28, тел. 87142 –
 55-85-80; e-mail: elektroenergetika@mail.ru 
Хайруллина Д.И., Якупова А.И. –
 
студентки специальности по направлению 200100.62  При
-
боростроение,  Чистопольский  филиал  «Восток»  Казанского  национального  исследовательского 
технического университета им. А.Н. Туполева
-
КАИ, РФ, г. Чистополь.
 
 
 
 
 
 
 
 

ТЕХНИКАЛЫҚ ҒЫЛЫМДАР ЖӘНЕ ТЕХНОЛОГИЯЛАР 
 
 
252 
УДК 621.389
 
 
АВТОНОМДЫҚ БАЛАМАЛЫ ЭНЕРГИЯ КӚЗДЕРІНІҢ
 
ЭЛЕКТРОМАГНИТТІК ҤЙЛЕСІМДІЛІК
 
 
Сапа В. Ю. 

т.ғ
.
к.

электрэнергетикасы және физика кафедрасының аға оқытушысы, А. Бай
-
тұрсынов атындағы Қостанай мемлекеттік университеті
 
Бондаренко  С.А.  –
 
электрэнергетикасы  және  физика  кафедрасының  магистранты,  А.  Бай
-
тұрсынов атындағы Қостанай мемлекеттік университеті
 
Темирханова  Х.З.  –
 
электрэнергетикасы  және  физика  кафедрасының  аға  оқытушысы,  А. 
Байтұрсынов атындағы Қостанай мемлекеттік университеті
 
 
Мақалада автономдық баламалы энергия көздерінің электромагниттік үйлесімділігінің шешу 
және  келешегі  жолдары  мен  мәселелері  бейнеленген.  Өндірілген  электрлік  энергиясының  сапа 
бойынша  талаптары  анықталған.  Түрлендіргіштер  бойынша  электромагниттік  үрдістерінің 
қарым
-
қатынасы  табылған
 
және  олардың  техникалық  –
 
экономикалық  көрсеткіштеріне  әсер 
тигізуі.
 
Өндірістік  технологияларын  жүзеге  асырылған  техникалық  құралдар  энергияның  сапасына 
белгілі  талаптар  қояды.  Тиісті    екіншілік  қуат  көздерін  тиісті  реттеуіштерімен  жабдықтайды 
және  олармен  бірге  тұйықталған  динамикалық  жүйелерді  құрайды.  Кез  –
 
келген  тең  шарттарда 
энергия көздерінің қуатын көтеру әрқашан өнімсіз энергия жоғалту арттыруына және  тиісті жаб
-
дықтың  габариттері  мен  салмағының
 
ұлғайтуына  әкеледі.  Осы  айтылған  себептерге  байла
-
нысты  автономдық  объектілерінде  әсіресе  қозғалмалы  энергия  көздерінің  қуатын  көтеру  өте 
жағымсыз,  сондықтан  іс  жүзінде  автономдық  объектілерінің  энергия  көздерінің  қуаты    шектеулі 
және де қабылдағыштар қуатымен мөлшерлес болады. Энергия көздерінің қуаты шектеулі себебі 

 
олардың шықпалық координатарының жүктеменің режим және жұмыс сипаттамалар  мәндердің 
тәуелділігі болып табылады
 
Реттеулі  электрлік  жетектер  жүйелерінде  жаңа  күштік  жартылай  өткізгіштік  аспаптар 
IGBT,  GTO типті және т.б.  пайдалану басқару құрылыстарының салмақғабариттік көрсеткіште
-
рін  жетілдіру  және  электр  жетектерінің  техникалық  –
 
экономикалық  көрсеткіштерін
 
айтарлық
-
тай арттыру мүмкіндік береді. 
 
Негізгі сөздер: электр энергия көзі, электр энергетикасы, қуат, өндіргіш, технологиялар
 
 

Достарыңызбен бөлісу:
1   ...   44   45   46   47   48   49   50   51   52




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет