Методическая система подготовки студентов высшей педагогической школы к реализации линии практических приложений в курсе геометрии основной и старшей ступени общего образования



Pdf көрінісі
бет38/200
Дата18.10.2022
өлшемі4,6 Mb.
#43872
түріАнализ
1   ...   34   35   36   37   38   39   40   41   ...   200
Байланысты:
dissertatsiya-M.V.-Egupova

2.1.2.
.
Принципы конструирования линии практических приложений 
математики в школе 
Выделенная ранее методологическая функция линии ППМ, а также представле-
ния о роли математики в познании предметного мира, исторических аспектах развития 


93
математики, которые изложены в работах А.Д. Александрова, Н.Я. Виленкина, 
А.Н. Колмогорова и других ученых – математиков и педагогов, позволяют сформули-
ровать ведущую идею и принципы ее конструирования.
По утверждению А.Н. Колмогорова, отличительной чертой взаимодействия ма-
тематики с действительным миром является то, что задачи практики то выходят на 
первый план и ведут за собой развитие математики, то служат средством проверки 
истинности вновь созданных теорий [175]. Все частные математические методы, ис-
пользуемые для решения определенных классов прикладных задач, составляют еди-
ный математический метод познания действительности. Этот метод – некоторая 
философская категория, которая характеризуется рядом особенностей. М. Клайн вы-
делил их в своей работе «Зарождение математики и ее роль в познании» [173]. Осо-
бенности математического метода познания реальности состоят в следующем: ос-
новные математические понятия возникли при рассмотрении реальных объектов; 
абстрактные математические понятия являются отражением реальных объектов 
и отношений между ними; идеализированные математические понятия имеют про-
образы в реальном мире и представляют различные классы реальных объектов. Итак, 
сущность математического метода познания состоит в том, что изучение действитель-
ности средствами математики происходит на основе использования идеализирован-
ных понятий, систем аксиом в процессе идеализации, обобщения и абстракции реаль-
ных явлений. 
Накопленный педагогический опыт свидетельствует, что практические прило-
жения геометрии для их использования в обучении должны быть подобраны специ-
альным образом. В этом вопросе мы разделяем мнение автора школьных учебников 
геометрии В.А. Гусева: «Мы не хотим превратить геометрию в естественнонаучную 
дисциплину, мы решаем следующую методическую задачу: показать, как геометрия 
помогает познавать окружающий мир, как с помощью геометрии понять его законо-
мерности, как использовать геометрию в практической жизни» [236]. 
Как известно, приобретенные школьниками умения применять геометрию про-
являются при изучении ряда школьных предметов: физики, химии, географии и т. д. 


94
Для развития таких умений в курс геометрии традиционно включаются межпредмет-
ные задачи. Для того чтобы уроки геометрии не подменяли уроки других дисциплин, 
при подборе задач межпредметного содержания основной акцент делается на постро-
ение математической модели, на выбор подходящего математического аппарата. Ис-
пользуемые при этом физические, химические или какие-либо другие модели задачи 
достаточно просты. Таким же образом осуществляется и подбор всех видов задач на 
приложения математики. Ведь на уроках математики школьники, прежде всего, обу-
чаются математике.
Руководствуясь выводами, полученными в результате изучения роли матема-
тики в познании предметного мира, исторических аспектов развития математики-
науки, исторического анализа развития прикладной составляющей школьного курса 
математики, сформулируем ведущую идею реализации линии ППМ и практико-ори-


Достарыңызбен бөлісу:
1   ...   34   35   36   37   38   39   40   41   ...   200




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет