МЕТОД НАЧАЛЬНЫХ ПАРАМЕТРОВ
В этой статье будут рассмотрены основные нюансы расчета прогибов, методом начальных параметров, на примере консольной балки. А также рассмотрим пример, где с помощью универсального уравнения, определим прогиб балки и угол поворота.
Теория по методу начальных параметров
Возьмем консольную балку, нагруженную сосредоточенной силой, моментом, а также распределенной нагрузкой. Таким образом, зададимся такой расчетной схемой, где присутствуют все виды нагрузок, тем самым охватим всю теоретическую часть по максимуму.
Обозначим опорные реакции в жесткой заделке, возникающие под действием внешней нагрузки:
Выбор базы и системы координат
Для балки выберем базу с левой стороны, от которой будем отсчитывать расстояния до приложения сил, моментов, начала и конца распределенной нагрузки.
Базу обозначим буквой O и проведем через нее систему координат:
Базу традиционно выбирают с левого краю балки, но можно выбрать ее и справа. Тогда в уравнении будут противоположные знаки, это может пригодиться в некоторых случаях — упростит немного решение. Понимание, когда принимать базу слева или справа, придет с опытом использования метода начальных параметров (МНП).
Универсальное уравнение МНП
После введения базы, системы координат и обозначения расстояний а, б, в, г записываем универсальное уравнение МНП, с помощью которого, будем рассчитывать прогиб балки (вертикальное перемещение сечения K, находящегося на свободном торце балки):
Теперь поговорим об этой формуле, проанализируем, так сказать:
E – модуль упругости;
I – момент инерции;
VK – прогиб сечения K;
VO – прогиб сечения O;
θO – угол поворота сечения О.
Основные закономерности этого уравнения и как записать его для любой балки постоянного сечения.
Итак, изучаем эту формулу слева направо. В левой части уравнения обознается искомый прогиб, в нашем случае VK, который дополнительно умножается на жесткость балки — EI:
В уравнении всегда учитывается прогиб сечения балки, совпадающего с нашей базой EIVO:
Также всегда учитывается угол поворота сечения, которое совпадает с выбранной базой. Причем произведение EIθO всегда умножается на расстояние от базы до сечения, прогиб которого рассчитывается, в нашем примере — это расстояние г.
Следующие компоненты этого уравнения учитывают всю нагрузку, которая находится слева от рассматриваемого сечения. В скобках расстояния от базы до сечения отнимаются расстояния от базы до соответствующей силы или момента, начала или конца распределенной нагрузки.
Скобка, в случае с сосредоточенными силами, возводится в 3 степень и делится на 6. Если сила смотрит вверх, то считаем ее положительной, если вниз, то в уравнении она записывается с минусом:
В случае с моментами скобка возводится во 2 степень и делится на 2. Знак у момента будет положительный, когда он направлен по часовой стрелке и отрицательным, соответственно, если против часовой стрелки:
Достарыңызбен бөлісу: |