ЖАНУ ПРОЦЕСІН ЫҒЫСТЫРҒАН ПИРОЛИЗ ОТТЫҚ ЖАҒДАЙЫНДА
ШЫРАҒДАНДАҒЫ КӨМІР АЗОТЫНЫҢ ƏРЕКЕТІ
Д.Ж. Темирбаев, Б. Оңғар Бұлбұл
1
1
Алматы Энергетика жəне Байланыс Университеті, Алматы қ.
Түйін сөздер: атом азоты, от жағу камерасы, көмірдің шаңы, шырағдан, ауа ағысы, жану процесі, от жағу процесі,
шаң жүйелері.
Аннотация. Энергетиканың маңызды міндеттерінің бірі – оның қоршаған ортаға жəне адамға кері əсерін азайту [1].
Атмосферадағы NO
X
азот оксидтері қоршаған ортаға жəне ең əуелі, адамға, жануарлар əлемі мен өсімдікке жаман
əсер етеді.
Адам тыныс жолы ауруларына, ал өсімдік жəне жанурлар əлемі қышқыл жаңбырға ұшырайды. Соңғысы тек ғана
ауылшаруашылығына зиян келтіріп қоймай, тотығуға жəне құрылыс объектілерінің бүлінуіне əсер етеді.
Азот оксидін негізгі тудырушы – органикалық отынды жандыру процестері. Отын жанған кездегі олардың
эмиссиясын төмендету негізгі экологиялық міндет болып табылады.
Пеште отын жанған кезде (NO) азоттың монооксидінің 95-99% жəне (NO
2
) азоттың токсикалық диоксидінің 1-5%
артығы түзіледі. Атмосферада азот диоксиді бақылаусыз түрде диоксидке айналады. Атмосфера ауасындағы азот
диоксидінің үлесін есептеу үшін ЖЭС қалдықтарының газдалуын жəне нормалануын есептегенде шартты түрде 0,8
коэффициенті қолданылады.
Бұл жұмыс Текелі ЖЭО-2 БКЗ-75-39Ф қазандығын жөндеуге қатысты қышқылдың деңгейі төмен көмір шаңын
шырағданда үнемді жағуды ұйымдастыру сұрақтарына арналған.
Поступила 16.05.2016 г.
Доклады Национальной академии наук Республики Казахстан
78
REPORTS OF THE NATIONAL ACADEMY OF SCIENCES
OF THE REPUBLIC OF KAZAKHSTAN
ISSN 2224-5227
Volume 3, Number 307 (2016), 78 – 86
МЕТОД РЕЛАКСАЦИОННЫХ ЯДЕР В МАТЕМАТИЧЕСКОЙ
МОДЕЛИ ПРОЦЕССОВ ПЕРЕНОСА И АГРЕГАЦИИ
А.С. Муратов, А.М. Бренер, Л. Ташимов
Южно-Казахстанский государственный университет, Шымкент, Казахстан
Amb_52@mail.ru, brener@fromru.com, asm_59@mail.ru
Аннотация. В статье дан обзорный анализ математических моделей для описания тепло- и
массопереноса и агрегационных процессов с помощью метода релаксационных ядер переноса, который
открывает новые возможности для детального изучения влияния иерархии времен релаксации на
интенсивность высокоскоростных и нано-масштабных технологических процессов.
Ключевые слова: массо- и теплоперенос, времена релаксации, релаксационные ядра, перекрестные
эффекты, агрегация.
THE RELAXATION KERNELS APPROACH
TO MATHEMATICAL MODELS OF TRANSFER
AND AGGREGATION PROCESSES
A.S. Muratov, A. M. Brener, L. Tashimov
South Kazakhstan State University,
5, Tauke Khan, Shymkent, 160012, Kazakhstan
Key words: Mass and Heat Transfer; Relaxation times; Relaxation kernels; Cross effects; Aggregation.
Abstract. The paper deals with mathematical models describing heat and mass transfer and aggregation
processes with the help of relaxation transfer kernels approach, which opens up fresh opportunities for detailed study
of influence of relaxation times hierarchy on the intensity of high rate and nano-scale technological processes.
1. Introduction
Consideration of relaxation times and long-range interaction of structural components of a medium is
a great practical and theoretical problem [1–3] that is relevant in cases of high rate or nano-scale
technological processes. The operation cycle of these processes is short, and the entire process may go on
under the transient regime. In this connection, resources of effective controlling such processes are
limited, and it is important to calculate correctly and select the best values of governing parameters.
Problems of modeling both high rate and nano-scale processes are in touch with construction of
equations with retarded or divergent arguments that reflects the actual mechanism of transfer phenomena
in the medium modeled as a system of interacting oscillators with a set of partial frequencies and
interaction potentials [2, 3].
At the same time, though realization of that investigation program is very tempting, it’s unlikely to
promise near creation of the reliable engineering methodology for calculating heat and mass transfer
processes. The alternative approach to the problem is the methodology of relaxation transfer kernels,
which can be calculated from model evolution equations [3]. In a few articles before we elaborated upon
this approach to modeling heat and mass transfer in high rate processes [3-8].
In this article we summarize briefly our results in the area of description of time nonlocality applied
to heat and mass transfer and try to develop this approach for describing time nonlocality in aggregation
processes. We concentrate our attention upon a problem of equations structure, touching on the problem
ISSN 2224–5227
№ 3. 2016
79
of analytical solutions of government equations in the lesser degree.
2. Mass and heat transfer equations
2.1. Main concept
Relaxation transfer kernels are the kernels of integral transformations that, in the statistical theory of
dissipation processes, relate fluxes with thermodynamic forces [1]. The general structure of these relations
for components fluxes in a multicomponent system according this methodology is like that [6]
)
,
(
)
,
,
,
(
)
,
(
)
,
(
1
1
1
0
t
R
F
t
t
R
R
N
R
d
dt
t
R
J
t
R
J
k
ik
n
k
i
i
′
′
′
+
=
∑∫∫
=
.
(1)
Limiting one self to the time nonlocality in the multicomponent system, one can write expressions
for the
n
linearly independent mass fluxes
i
J
of components and the heat flux
h
J
as
2
1
0
1
1
1
1
0
1
)
,
(
)
,
(
)
,
(
T
T
t
t
R
N
dt
T
t
R
t
t
R
N
dt
J
iT
t
n
k
k
ik
t
i
∇
−
−
⎟
⎠
⎞
⎜
⎝
⎛
∇
−
−
=
∫
∑∫
=
ν
, (2)
2
2
0
2
1
2
2
0
2
)
,
(
)
,
(
)
,
(
T
T
t
t
R
N
dt
T
t
R
t
t
R
N
dt
J
TT
t
n
k
k
Tk
t
T
∇
−
−
⎟
⎠
⎞
⎜
⎝
⎛
∇
−
−
=
∫
∑∫
=
ν
,
(3)
where
i
ν
is a chemical potential;
R
- space coordinates;
T
- temperature;
t
- time.
For a more compact description, let’s assume
1
1
−
≡
+
n
ν
. Then, in expressions (2), (3), one can
replace the subscript
h
by
1
+
n
and write a unified form for the mass fluxes and heat flux in the
multicomponent system.
∑∫
+
=
⎟
⎠
⎞
⎜
⎝
⎛
∇
−
−
=
1
1
1
1
0
1
)
,
(
)
,
(
n
k
k
ik
t
i
T
t
R
t
t
R
N
dt
J
ν
.
(4)
Let’s also introduce notation for the integral terms
⎟
⎠
⎞
⎜
⎝
⎛
∇
−
=
∫
T
t
R
t
t
R
N
dt
I
k
ik
t
ik
)
,
(
)
,
(
1
1
0
1
ν
.
(5)
Now, instead of equations (2), (3) we get
∑
+
=
−
=
1
1
n
k
ik
i
I
J
(6)
For calculating the relaxation transfer kernels we can use various approximations which are based on
information about the physical mechanism of the processes [1, 2]. However, the analyses of various data
[1, 2] as well as our own experience [4-8] allow us to submit the heuristic unified model equation for
relaxation kernels
1
1
1
−
≠
=
−
∑
+
−
=
ik
n
i
k
k
k
ii
i
i
N
N
t
N
τ
τ
∂
∂
,
(7)
where, in order to be in agreement with the Onsager principle, it is assumed that
ki
ik
τ
τ
=
.
Of course, it’s impossible to warrant that form (7) is actually universal. But we shall consider
equation (7) as the base model for our further constructions.
The matrix of system (7) is symmetrical; therefore, all its eigenvalues are real. In this connection,
solution (7) can be represented as the sum of the forward and cross terms of the transfer kernels [6]:
∑
=
=
n
k
ik
i
N
N
1
,
(8)
where all items are real exponents and
ki
ik
N
N
=
.
Доклады Национальной академии наук Республики Казахстан
80
As it is shown in [6] with the help of the above model we can infer the following relations for
integrals (5):
ik
ik
k
ik
ik
I
T
t
I
τ
ν
η
−
⎟
⎠
⎞
⎜
⎝
⎛
∇
=
∂
∂
,
(9)
where for isotropic medium we suppose [3]
0
=
R
ik
∂
∂η
(10)
So then, as a result of the repeated differentiation of (4) up to derivatives of the (
1
+
n
)-th order, the
following relationships are obtained (where for any function
Z
t
Z ≡
∂
∂
0
0
):
∑
∑
∑
−
=
+
=
+
+
=
−
−
−
−
+
−
+
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∇
∂
∂
−
=
∂
∂
1
0
1
1
1
1
1
1
1
1
)
1
(
)
(
)
1
(
m
s
n
k
m
ik
ik
m
n
k
s
ik
k
ik
s
m
s
m
s
m
i
m
I
T
t
t
J
τ
τ
ν
η
,
(11)
Thus, for each of the components we obtain a system which consists of
)
1
(
+
n
equations connecting
the component flux with its derivatives up to
)
1
(
+
n
order inclusive.
The matrices
i
M
of the obtained systems are not degenerate
0
)
1
(
det
det
1
≠
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
=
−
m
ik
m
i
M
τ
.
(12)
In this connection, from the
)
1
(
+
n
equations that are linear relative to integrals
ik
I
, one can
express all these integrals through the derivatives of fluxes
i
J
and then substitute the obtained
expressions into equation (6).
As a result, one can come to the linear differential equation of the
)
1
(
+
n
th order for the fluxes of
each of the components [6]
0
,...,
;
,...
,
1
1
1
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
∂
∂
+
+
n
i
n
i
n
n
i
n
J
t
J
t
J
L
ν
ν
.
(13)
where
L
is the linear operator.
The succeeding deduction is based on the conservation laws:
0
=
⋅
∇
+
∂
∂
i
i
J
t
ν
.
(14)
Acting on expression (13) by the nabla operator and using equation (14), we can obtain the
differential equation of the
)
2
(
+
n
th time-order for the potential of each of the components
0
,
,
;
,..,
;
,...,
)
(
,
)
(
2
1
2
1
1
1
2
2
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∇
∇
∂
∂
∂
∂
∂
∂
+
+
+
+
n
n
i
n
i
n
n
i
n
t
t
t
L
ν
ν
ν
ν
ν
ν
ν
K
.
(15)
The nonlinear generalization of equation (4) can be represented in a nonlocal quadratic form with
tensor kernels [6, 8]
ISSN 2224–5227
№ 3. 2016
81
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∇
⎟
⎠
⎞
⎜
⎝
⎛
∇
−
−
−
−
⎟
⎠
⎞
⎜
⎝
⎛
∇
⋅
−
−
=
∑∑∫∫
∑∫
+
=
+
=
+
=
T
t
R
T
t
R
t
t
t
t
R
N
dt
dt
T
t
R
t
t
R
N
dt
J
p
n
k
k
ikp
n
p
t t
n
k
k
ik
t
i
)
,
(
)
,
(
:
)
,
,
(
)
,
(
)
,
(
2
1
1
1
2
1
)
2
(
1
1 0 0
2
1
1
1
1
1
)
1
(
0
1
ν
ν
ν
,
(16)
In the weakly nonlinear approximation, we can assume [8]
)
1
(
)
1
(
)
2
(
ip
ik
ikp
N
N
N
ε
=
,
(17)
where ε is the series expansion parameter.
One can evaluate the small parameter
ε
as the ratio of the two Knudsen numbers that are calculated
by two characteristic spatial scales for the elastic and inelastic molecular collisions, respectively [8]
2.2. Examples
As the first example let’s consider mass and heat transfer in two-component systems like high dilute
solutions. In this case the cross fluxes may be disregarded [3, 4].
Thus we use simplest form of relaxation kernels
)
)
(
exp(
)
,
(
)
,
(
1
1
i
i
i
t
t
t
R
t
t
R
N
τ
η
−
−
=
−
. (18)
Relations for mass and heat fluxes read
)
,
(
)
,
(
1
1
1
0
1
1
t
R
t
t
R
N
dt
J
t
ν
∇
−
=
∫
, (19)
)
,
(
)
,
(
2
2
2
0
2
2
t
R
t
t
R
N
dt
J
t
β
∇
−
=
∫
.
(20)
Thus, operating under the above methods applied to an isotropic media we are led to the following
transfer equations of a hyperbolic type [3]:
ν
η
∂
∂ν
η
∂
∂
τ
∂
ν
∂
τ
2
1
1
1
2
2
1
ln
1
∇
+
⎟
⎠
⎞
⎜
⎝
⎛ −
=
t
t
t
,
(21)
β
η
∂
∂β
η
∂
∂
τ
∂
β
∂
τ
2
2
2
2
2
2
2
ln
1
∇
+
⎟
⎠
⎞
⎜
⎝
⎛ −
=
t
t
t
.
(22)
The case of a non-isotropic media is also considered in [3].
Equations (21), (22) closely resemble transfer equations for media with memory that are presented in
[2]. It’s easy to check also that under the exponential relaxation kernel the heat transfer equation (22)
corresponds with the Maxwell – Kattaneo law:
T
t
q
q
∇
−
=
+
λ
∂
∂
τ
,
(23)
where
2
2
2
1
η
∂
∂
τ
τ
τ
t
−
=
,
)
1
(
1
2
2
2
2
T
t
η
∂
∂
τ
η
λ
−
=
.
(24)
Under the relaxation times that are far less than the observation time the above equations can be
considered by the methods of singular perturbations.
The next example we consider is mass and heat transfer in diluted two-component systems with
allowing for cross effects like the thermal diffusion and the Soret effect [4]. Model system for the
Доклады Национальной академии наук Республики Казахстан
82
relaxation kernels reads
1
1
−
×
−
+
−
=
τ
τ
∂
∂
h
m
m
m
N
N
t
N
,
(25)
1
1
−
−
×
−
=
h
h
m
h
N
N
t
N
τ
τ
∂
∂
.
(26)
The choice of signs in equations (25) and (26) is determined by the conditions of coupling distortions
of the temperature and concentration fields [4].
The solution of equations (25) and (26) can be written in the form
mh
mm
m
N
N
N
+
=
,
(27)
hm
hh
h
N
N
N
+
=
,
(28)
Here:
⎥
⎦
⎤
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
=
)
exp(
1
)
exp(
1
2
1
1
2
1
2
s
s
N
m
m
m
mm
λ
τ
λ
λ
τ
λ
λ
λ
η
,
(29)
⎥
⎦
⎤
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
=
)
exp(
1
)
exp(
1
2
1
1
2
1
2
s
s
N
h
h
h
hh
λ
τ
λ
λ
τ
λ
λ
λ
η
,
(30)
)]
exp(
)
[exp(
)
(
2
1
1
2
s
s
N
N
hm
mh
λ
λ
λ
λ
τ
η
−
−
=
=
×
×
,
(31)
were
2
1
,
λ
λ
are eigenvalues of the system (25), (26).
From the condition of damping the perturbations in quasi-equilibrium systems it is readily available
that both eigenvalues should be negative. From this, one can obtain the inequality:
h
m
τ
τ
τ
>
×
(32)
The time dependence of cross transfer kernels has a maximum. This phenomenon is caused by the
influence of thermal diffusion or the Soret effect [4, 8]. The peak of the time dependence of cross transfer
kernels determines the period of increasing initial perturbations of the temperature and concentration
fields. This period is easily evaluated [8]:
2
1
1
2
)
ln(
λ
λ
λ
λ
τ
−
=
=
↑
cr
s
(33)
As it follows from (15) we can obtain equations of the 3rd time-order for heat and mass transfer in
the considered case.
Достарыңызбен бөлісу: |